
Web application security

COINS Summer School 2019

Jingyue Li (Bill)

Associate Prof.

Dept. Computer Science

NTNU
1

Goal of teaching

No more - «Penetrate & Patch»

Outline

➢Typical Web app security risks and mitigations

• My studies related to Web app security

3

4

10 Most Critical Web Application Security Risks

Injection Attacks

5

Injection attacks

• SQL injection

• Blind SQL injection

• Xpath injection

• …

6

Injection attack

• Malicious inputs inserted into

– Query/Data

– Command

• Attack string alters intended semantics

– Query/Data

– Command

7

SQL injection – normal input

Username: Password: Log In

“Server side login code (E.g., PHP)”

$ result = mysql_query (“ select * from Users where (name = ‘$ user’
and password = ‘$pass’); ”);

Application constructs SQL query from parameter to DB, e.g.

Select * from
Users where name = user1 and password = OK123456

8

SQL injection – Attack scenario (1)

• Attacker types in this in username field

user1 ’ OR 1=1); --

$ result = mysql_query (“ select * from Users where (name = ‘user1 ’
OR 1=1); -- and password = ‘whocares’); ”);

• At the server side, the code to be executed

• SQL query constructed is

Select * from Users

Where name = user1 OR 1= 1

1=1 is always true. All
user data compromised

9

SQL injection – Attack scenario (2)

• If attacker types this in username field

user1 ’ OR 1=1); Drop TABLE Users; --

Select * from Users

Where name = user1 OR 1=1;

Drop TABLE Users;

• SQL query constructed is
Delete the Table Users

10

SQL injection Humor

11

http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiN94eCmpbOAhXDXCwKHcXhCwYQjRwIBw&url=http://bobby-tables.com/&psig=AFQjCNGkEoqsZjW2NccyZpoeXOjMWrYv3w&ust=1469796830772669

Is SQL injection just a humor?

By searching key word SQL injection in
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&query=sql+injection
&search_type=all

12

13

SQL injection countermeasures

• Blacklisting

• Whitelisting

• Escaping

• Prepared statement & bind
variables

• Mitigating impact

14

<< All input is evil. >> Michael Howard

Blacklisting

• Filter quotes, semicolons, whitespace, and …?

– E.g. Kill_quotes (Java) removes single quotes

user1 ’ OR 1=1); --

15

Pitfalls of Blacklisting

• Could always miss a dangerous character

• May conflict with functional requirements

– E.g. A user with name O’Brien

16

Whitelisting

• Only allow well-defined safe inputs

• Using RegExp (regular expressions) match string

– E.g. month parameter: non-negative integer

• RegExp: ^[0-9]+$

• ^ beginning of string, $ end of string

• [0-9] + matches a digit, + specifies 1 or more

• Pitfalls: Hard to define RegExp for all safe values

17

Escaping

• Could escape quotes instead of blacklisting

– E.g. Escape(O’Brien) = O’’Brien

INSERT INTO USERS(username, passwd) VALUES (‘O’’Brien’, ‘mypasswd’)

• Pitfalls: like blacklisting, could always miss a
dangerous character

18

Prepared statements & Bind variables

19

• Root cause of SQL injection attack
– Data interpreted as control, e.g., user1 ’ OR 1=1); --,

• Idea: decouple query statement and data input

Examples of PHP prepared statement

20

• Prepare the statement with placeholders

– $ ps = $ db->prepare(‘SELECT * FROM Users WHERE name = ?
and password = ?’);

• Specify data to be filled in for the placeholders

– $ ps -> execute (array($current_username,

$current_passwd));

Bind variable;
Data Placeholder

Why prepared statements & bind
variables work?

• Decoupling lets us compile the prepared
statement before binding the “query input data”

– Prepared statements

• Preserve the structure of intended query

• “Query input data” is not involved in query parsing or
compiling

– Bind variables

• ? Placeholders guaranteed to be data (not control)

21

Why Prepared statements & Bind
variables work (cont’)?

select * from Users where (name = ‘$user’ and
password = ‘$pass’);

Select /from / where

* Users and

= =

name password $pass$user

Malicious inputs can be interpreted
as command during compiling

select * from Users where (name = ‘?’ and
password = ‘?’);

Select /from / where

* Users and

= =

name password ??

Malicious inputs will always be
interpreted as data during compiling

user1 ’ OR 1=1); --

22

Mitigating impact

• Prevent schema & information leakage

– E.g. Not display detailed error message to external
users

– E.g. Not display stack traces to external users

• Limiting privileges

– No more privileges than typical user needs

– E.g. Read access, tables/views user can query

– E.g. No drop table privilege for typical user

23

Mitigate impact (cont’)

• Encrypt sensitive data, e.g.,

– Username, password, credit card number

• Key management precautions

– Do not store encryption key in DB

24

Session Management Attacks

25

Why session management?

• HTTP is stateless

• Impossible to know if Req1 and
Req2 are from same client

• Users would have to constantly
re-authenticate

• Session management

– Authenticate user once

– All subsequent requests are tied to
user

26

Session tokens

Post/login Username &
password

Set logged-in session token

Check
credentials

Request 1 and logged-in
session token

Validate
token

Response to request 1

Request 2 and logged-in
session token

Response to request 2

Validate
token

Get index.html

Response to get index.html and
set anonymous session token

Get books.html and
anonymous session token

Response to get books.html
request

Post/login Username &
password

Set logged-in session token

Request 1 and logged-in
session token

Response to request 1

Browser

Browser Server

Server

Validate
token

Check
credentials

Validate
token

27

Session management with cookie

Post/login Username &
password

Set cookie back

Request 1 with cookie

Check
credential
and index

session
with a
cookie

Request 2 with cookie

Validate
cookie

Browser Server

Store
cookie

Validate
cookie

28

How cookie works

• Setting and sending cookies

– In header of HTTP response (Server to browser)
set-Cookie: token=1234; expire=Wed, 3-Aug-2016 08:00:00; path=/; domain = idi.ntnu.no

– In header of HTTP request (Browser to server, when
visit the domain of the same scope)

Cookie: token=1234

• Cookie protocol problem

– Sever only sees Cookie: NAME = VALUE

– Server does not see which domain sends the cookie
29

Session management attacks and
countermeasures

• Session token theft

• Session token predication attack

• Session fixation attack

30

Session token theft – Sniff network

• User
– Alice logs in login.site.com (HTTPS)

– Alice gets logged-in session token

– Alice visits non-encrypted.site.com (HTTP)

• Attacker
– Wait for Alice to login

– Steal the logged-in session token (in HTTP)

E.g. FireSheep (2010) sniff WiFi in wireless cafe

– Impersonate Alice to issue request

31

Session token theft – Logout problem

• What should happen during logout

– 1. Delete session token from client

– 2. Mark session token as expired on server

– Many web sites do (1) but not (2)!!

• Attacker

– If can impersonate once, can impersonate for a long
time

– E.g. Twitter sad story

• Token does not become invalid when user logs out

https://packetstormsecurity.com/files/119773/twitter-cookie.txt (2013)
32

https://packetstormsecurity.com/files/119773/twitter-cookie.txt

Solutions to Session token theft

• Always send Session ID over encrypted channel

• Remember to log out

• Time out session ID

• Delete expired session ID

• Binding session token to client’s IP or computer

33

Binding session token to client’s IP or
Computer

• Idea:

– Overcome cookie protocol problem

• Sever only sees Cookie: NAME = VALUE

• Server does not see which domain sends the cookie

• Combine IP

– Possible issue: IP address changes (Wifi / 3G)

• Combine user agent: weak defense, but does
not hurt

34

Session token predication attack

• Predicable tokens, e.g., counter

• Non-predicable token means

– Seeing one or more token

– Should not be able to predict other tokens

• Solution:

– Do not invent own token generator algorithm

– Use token generator from known framework (e.g.,
ASP, Tomcat, Rails)

35

Session fixation attack

• User
– Visits site using anonymous token

• Attacker
– Overwrites user’s anonymous

token with own token

• User:
– Logs in and gets anonymous token

elevated to logged-in token

• Attacker:
– Attacker’s token gets elevated to

logged-in token after user logs in

• Vulnerability: Sever elevates the
anonymous token without
changing the value

Get index.html

Response to get index.html and
set anonymous session token

Get books.html and
anonymous session token

Validate
token

Response to get books.html
request

Check
credentials

Post/login Username &
password

Set logged-in session token

Request 1 and logged-in
session token

Response to request 1

Validate
token

36

How to overwrite session token?

• Tampering through network
– Alice visits non-encrypted.site.com (HTTP)

– Attacker injects into response to overwrite secure
cookie

Set-cookie: SSID=maliciousToken;

• Cross-site scripting
– How?

37

Mitigate session fixation

• Always issue a new session token, when
elevate from anonymous token to logged in
token

38

Cross-Site Scripting (XSS) Attack

39

An application vulnerable to XSS
Server

http://example.com/query?name = Bob

Query

Bob

Client

Query.html

Name:

Query string (i.e. Bob)
ECHOed back in result.html

Return result.html as response

Your query

Bob

Query results
Name: Bob Johnson
Tel: 123456

result.html

<H2> Your query

Bob
</H2>
<H2> Query results
<p>

Name: Bob Johnson
Tel: 123456

</p>
</H2>

Render: result.html

40

An application vulnerable to XSS
(cont’)

Server

http:/example.com/query?name =
<script>alert(123)</script>

Query

<script>alert(123)</script>

Client

Query.html

Name:

Query string
(i.e. <script>

alter(123)</script>)
ECHOed back in result.html

Return result.html as response

Your query

<script>alert(123)</script>

Query results
None

result.html

Executes at the client side

<H2> Your query

<script>alert(123)
</script>

</H2>
<H2> Query results
<p>

None
</p>
</H2>

Render: result.html

41

Session token overwritten using XSS

• User
– Lured, clicks the link
➢ The browser executes the script document.cookie =

‘exampleComToken = 1234’ Overwrite user’s cookie value with
attacker’s cookie value, i.e., 1234

• Attacker
– Find out http://example.com/query? is vulnerable to XSS

– Get a valid anonymous token from the example.com, e.g.,
exampleComToken=1234

– Send this link to user

http://example.com/query?name = <script>

document.cookie = ‘exampleComToken = 1234'

</script>

– Lure user to click this link

42

http://example.com/query?name
http://book.com/query?name

XSS exploits

• Not just cookie theft/overwritten

• Attacker injects malicious script in your page

• Browser thinks it is your legitimate script

• Typical sources of untrusted input
– Query

– User/profile page (first name, address, etc.)

– Forum/message board

– Blog

– Etc.

43

Reflected vs. Stored XSS

• Reflected XSS

– Script injected into a request

– Reflected immediately in response

• Stored XSS

– Script injected into a request

– Script stored somewhere (i.e., DB) in server

– Reflected repeatedly

– More easily spread

44

XSS mitigation

• Sanitize / escape data inserted in web page

• Escape, e.g.,

– HTML Escape

• < <

• > >

<H2> Your query

<script>alert(123)
</script>

</H2>

<H2> Your query
< script >
alert(123)

< script >
</H2>

Return to browser as response

• Sanitize input data

45

XML External Entities (XXE)
Attack

46

XML External Entities

• Also called EXTERNAL (PARSED) GENERAL ENTITY*

• They refer to data that an XML processor has to parse

• Useful for creating a common reference that can be
shared between multiple documents

47

<!ENTITY name SYSTEM "URI">

External entity
declaration Private/local Location

* http://xmlwriter.net/xml_guide/entity_declaration.shtml

XML External Entities Attack

• Against an application that parses XML input
• Untrusted XML input containing a reference to

an external entity is processed by a weakly
configured XML parser

• Normal input
– Input: <test> hello</test>
– Output after XML parsing: hello

• Malicious input
– Input: <!DOCTYPE test [!ENTITY xxefile SYSTEM

“file:///etc/passwd”>]><test> &xxefile </test>
– Output: the content of file:///etc/passwd

(SENSITIVE INFORMATION DISCLOSED)
48

XML External Entities Countermeasure

• Disable XML external entity and DTD
processing

• Input sanitization

– Whitelisting

– Web Application Firewalls

49

Insecure Deserialization Attack

50

Insecure Deserialization

• Serialization • Deserialization

51

Object student
{“ID”: “1234”,

“Course”: “4237”,
“Grade”: “C”},

Client Server

{ID”: “1234”, “Course”: “4237”, “Grade”: “C”}
Object student
{“ID”: “1234”,

“Course”: “4237”,
“Grade”: “C”},

Serialized data is
often processed as
object. Developer

may forget to sanitize
it

Insecure Deserialization Attack

• SQL injection

• Server side code
– “SELECT Grade FROM student WHERE user = ‘“+ student.ID +”’; ”

• Attacker

– Tamper network data and inject SQL injection payload in
serialized data stream

{”ID”: “ ’or’1’=‘1 ”, “Course”: “4237”, “Grade”: “C”}

• Developer does not sanitize serialized data. Then server
will deserialize the data and use it to formulate object

– “SELECT Grade FROM student WHERE user = ‘or ‘1 = ‘1’; “
52

Insecure Deserialization
Countermeasure

• Not to accept serialized objects from
untrusted sources

• Implementing integrity checks such as digital
signatures on any serialized objects

• Isolating and running code that deserializes in
low privilege environments

• …

53

Insufficient Logging and
Monitoring

54

Insufficient Logging and Monitoring

• Vulnerability
– Auditable events, such as logins, failed logins, and

high-value transactions are not logged
– Warnings and errors generate no, inadequate, or

unclear log messages
– Logs of applications and APIs are not monitored for

suspicious activity
– Logs are only stored locally
– Appropriate alerting thresholds and response

escalation processes are not in place or effective
– Unable to detect, escalate, or alert for active attacks

in real time or near real time.

55

Insufficient Logging and Monitoring
Countermeasure

• Ensure all login, access control failures, and
server-side input validation failures can be
logged with sufficient user context to identify
suspicious or malicious accounts, and held for
sufficient time to allow delayed forensic
analysis

• Establish effective monitoring and alerting
such that suspicious activities are detected
and responded to in a timely fashion

56

HTML Attacks, e.g., Clickjacking
Attack

57

Clickjacking Attack

58

What you actually
click is this page, but
you cannot see this
page, because it is
transparent

Attacker overlays transparent frames to trick user into clicking on a button of
another page, which contains malicious behavior

What you see

Clickjacking Attack (Cont’)

59

Once the victim is surfing on the fictitious web page, he thinks that he is interacting with

the visible user interface, but effectively he is performing actions on the hidden page.

HTML feature the clickjacking attacker
exploits

• iframe and opacity

60

<html>
<head><title></title></head>
<body>

<iframe id= “top” src= “ http://attacker_wants_you_to_click_page.html” width =
“1000” height = “3000”>
<iframe id=“bottom” src = “ http://attacker_wants_you__to_see_page.html ” width =
“1000” height = “3000”>

<style type = “text/css”>
#top {position : absolute; top: 0px; left: 0px; opacity: 0.0}
#bottom {position: absolute; top:0px; left: 0px; opacity: 1.0}

</body>
</html>

Transparent

http://attacker_wants_you_to_click_page.html/
http://want_you_see_page.com/

Defend against Clickjacking Attack

• Preventing other web pages from framing the
site you want to defend (e.g., Defending with
X-Frame-Options Response Headers)

• My site will not show in the frame, so that
nobody can use my site to fool victim

61

<html>
<head><title></title></head>
<body>

<iframe id="bottom" src="https://www.facebook.com/" width="1000“ height="3000">
<style type ="text/css">

#bottom {position: absolute; top:0px; left: 0px; opacity: 1.0}
</body>
</html>

If Facebook set “X-Frame-Options: deny”,
Facebook will not show in <iFrame>

Outline

• Typical Web app security risks and mitigations

➢My studies related to Web app security

62

Study 1

• Evaluation of open-source IDE plugins for
detecting Web application security
vulnerabilities

• Research questions

– RQ1: What is the coverage?

– RQ2: How good is the performance?

– RQ3: How good is the usability?

63

The paper is published at EASE (Evaluation and Assessment of Software Engineering)
conference 2019.

IDE Plugins We Evaluate

• ASIDE

• ESVD

• LAPSE+

• SpotBugs

• FindSecBugs

64

Vulnerable Code We Use for
Evaluation

65

Functional Variant 1

Functional Variant 2

Functional Variant 3

Type of Security Vulnerability

1 2 3 ... n

1 2 3 ... n

1 2 3 ... n

Juliet Test Suite v1.3

28,000 Test Cases

112 Security Vulnerabilities
(CWE Entries)

Vulnerabilities and the test cases of
the Juliet Test Suite

66

Result of RQ1: Coverage

67

Claimed vs. Confirmed Coverage

68

Result of RQ2: Performance

69

70

A study* at Microsoft shows that “90% of the
participants are willing to accept a 5% false
positive rate, while 47% of developers accept up
to a 15% false positive rate.” of source code
analysis tools.

* Maria Christakis and Christian Bird. 2016. What developers want and need from
program analysis: an empirical study. InProceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering

Result of RQ3: Usability

71

Study 2

• Understanding and improving the open-
source IDE plugins for better performance

• Research questions

– RQ1: How is the plugin implemented?

– RQ2: Why is the performance poor?

– RQ3: How to improve the performance?

72

Study design

• Read the doc. and source code of the plugins

• For each false positive and false negative result,
investigate why it happens and generate
hypotheses

• Improve the code and re-test to verify the
hypotheses

• Focus only on ESVD, SpotBug, and FindSecBug

73

How are the test cases in Juliet Test
Suite structured?

• Source variant

74

How are the test cases in Juliet Test
Suite structured (cont’)?

• Control flow variant, e.g.,

75

• Data flow variant, e.g.,

Result of RQ1: How is the plugin
implemented?

• ESVD: Java source code, taint analysis

• SpotBug: Bytecode, taint analysis

• FindSecBug: Bytecode, taint analysis

76

Result of RQ2: Why poor
performance?

• Missing sources and sinks, e.g.,

– Only HttpServletRequest.getParameter(),
HttpServletRequest.geteQueryString(), and
HttpServletRequest.getHeader() are in sources
defined in Spotbug, which lead to its bad recall of
“HTTP Response Splitting” vulnerability

• Inadequate algorithm for analyzing control
and data flow variants

77

Result of RQ2: Why poor performance
(cont’)?

• Bad principle and design, e.g.,

– Spotbug and ESVD report all concatenated string
variables as SQL injection vulnerabilities, which
leads to high false positive.

• Uncertain detections are still reported, which
leads to high false positive

• We also find limitations of the Julie Test Suite

78

Result of RQ3: How to improve
performance?

• After proof-of-concept improvements

79

ESVD SporBug FindSeBug

Result of RQ3: How to improve
performance (cont’)?

80

• After proof-of-concept improvements
ESVD SporBug FindSeBug

Summary

• Many Web app vulnerabilities are about
details

• Developers need to understand the risks and
to develop secure code from the first place

• Tools to help developers are not perfect and
need improvements

81

