Web application security

COINS Summer School 2019
Jingyue Li (Bill)
Associate Prof.

Dept. Computer Science
NTNU



Goal of teaching

No more - «Penetrate & Patch»

g
AN UPDATE IS AVAILABLE 1
FOR Your CompuTeR ¥
CooL , MoRE NOT AGAIN/ O OH, ONLY
FREE STUFF! 344!

88 8

linU X windows mac



Outline

» Typical Web app security risks and mitigations

My studies related to Web app security



10 Most Critical Web Application Security Risks

OWASP Top 10 - 2017

A1:2017-Injection

OWASP Top 10 - 2013

A1 — Injection

A2 — Broken Authentication and Session Manage A2:2017-Broken Authentication

A3 - Cross-Site Scripting (XSS) A3:2017-Sensitive Data Exposure

A4 — Insecure Direct Object References [Merged+AT7] A4:2017-XML External Entities (XXE) [NEW]

A5 — Security Misconfiguration A5:2017-Broken Access Control [Merged]

A6 — Sensitive Data Exposure A6:2017-Security Misconfiguration

A7 — Missing Function Level Access Contr [Merged+A4] AT7:2017-Cross-Site Scripting (XSS)

A8 — Cross-Site Request Forgery (CSRF) A8:2017-Insecure Deserialization [NEW, Community]

A9 — Using Components with Known Vulnerabilities =9\ A9:2017-Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards [Zl A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

(=1



Injection Attacks



Injection attacks

SQL injection

Blind SQ

_Injection

Xpath inj

ection

SOL




Injection attack

* Malicious inputs inserted into
— Query/Data
— Command
* Attack string alters intended semantics
— Query/Data
— Command



SQL injection — normal input

Username: Password: -

“Server side login code (E.g., PHP)”

’

S result = mysql_query (“ select * from Users where (name = ‘S user
and password = ‘Spass’); ”);

Application constructs SQL query from parameter to DB, e.g.

Select * from
Users where name = userl and password = OK123456



SQL injection — Attack scenario (1)

e Attacker types in this in username field
userl’ OR 1=1); --

 Atthe server side, the code to be executed

S result = mysql_query (“ select * from Users where (name = ‘user1’
OR 1=1); -- and password = ‘whocares’); ”);

e SQL query constructed is 1=1 is always true. All

Select * from Users user data compromised

Where name = userl OR1=1 ©©O



SQL injection — Attack scenario (2)

* |If attacker types this in username field
userl’ OR 1=1); Drop TABLE Users; --

 SQL query constructed is

Delete the Table Users
Select * from Users

Where name = userl OR 1=1; o
Drop TABLE Users;

10



SQL injection Humor

HI, THIS 1

YOUR SONG SCHOOL.
WVERE HAVING SOME
(OMPUTER TROUBLE.

‘\%ﬂm

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY- /
R

A

I

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Gtiwlents; =~

~OH.YES LITTE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECCRDS.
T HOPE YOURE HAPPY.

!

AND I HPE
- YOUVE LEARNED
T0 SANMIZE YOUR
DATRBASE INPUTS.

11


http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiN94eCmpbOAhXDXCwKHcXhCwYQjRwIBw&url=http://bobby-tables.com/&psig=AFQjCNGkEoqsZjW2NccyZpoeXOjMWrYv3w&ust=1469796830772669

Is SQL injection just a humor?

Total Matches By Year

1200
[y]
[
o
R -
2 1000
E
1
e
a
L
o 800
a
[N
uy
e
= 600
@
a
=
u
a
] 400
=
o
@
-
= 200
-
[T
O
B

2000
2001 2003 2005 2007 2009 2011 2013 2015 2017 20149

Year

By searching key word SQL injection in
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&query=sql+injection
&search_type=all



Why so common?

What can you achieve?

- Bypass authentication
- Privilege escalation

- Stealing information

- Destruction

13



SQL injection countermeasures

Blacklisting
Whitelisting
Escaping

Prepared statement & bind only T
: UUT' N P U |
variables

here are no

Mitigating impact

<< All input is evil. >> Michael Howard

14



Blacklisting

Filter quotes, semicolons, whitespace, and ...?

— E.g. Kill _quotes (Java) removes single quotes

String kill quotes(String str) {

StringBuffer result = new StringBuffer (str.length());
for (int 1 = 0; 1 < str.length(); i++) {
if (str.charAt(i) !'= '"\'')

result.append(str.charat(i));
}

return result.toString

}

userl’ OR 1=1); --

15



Pitfalls of Blacklisting

* Could always miss a dangerous character

* May conflict with functional requirements

— E.g. A user with name O’Brien



Whitelisting

* Only allow well-defined safe inputs

e Using RegExp (regular expressions) match string
— E.g. month parameter: non-negative integer
* RegExp: *[0-9]+S
* A beginning of string, S end of string

* [0-9] + matches a digit, + specifies 1 or more

 Pitfalls: Hard to define RegExp for all safe values



Escaping

* Could escape quotes instead of blacklisting
— E.g. Escape(O’Brien) = O”Brien

INSERT INTO USERS(username, passwd) VALUES (‘O”Brien’, ‘mypasswd’)

* Pitfalls: like blacklisting, could always miss a
dangerous character



Prepared statements & Bind variables

* Root cause of SQL injection attack

— Data interpreted as control, e.g., userl’ OR 1=1); -,

* |dea: decouple query statement and data input



Examples of PHP prepared statement

* Prepare the statement with placeholders

— S ps =S db->prepare(‘SELECT * FROM Users WHERE name = ?
and password = ?<);

Bind variable;
Data Placeholder

e Specify data to be filled in for the placeholders
— S ps -> execute (array(Scurrent_username,
Scurrent_passwd));



Why prepared statements & bind
variables work?

* Decoupling lets us compile the prepared
statement before binding the “query input data”

— Prepared statements
* Preserve the structure of intended query

e “Query input data” is not involved in query parsing or
compiling

— Bind variables
* ? Placeholders guaranteed to be data (not control)



Why Prepared statements & Bind
variables work (cont’)?

select * from Users where (name = ‘Suser’ and  select * from Users where (name = ‘?’ and
password = ‘Spass’); password = ‘?’);
userl’ OR 1=1); --

Select /from / where Select /from / where

password

Malicious inputs can be interpreted
as command during compiling

Malicious inputs will always be
interpreted as data during compiling




Mitigating impact

* Prevent schema & information leakage

— E.g. Not display detailed error message to external
users

— E.g. Not display stack traces to external users
* Limiting privileges
— No more privileges than typical user needs

— E.g. Read access, tables/views user can query
— E.g. No drop table privilege for typical user



Mitigate impact (cont’)

* Encrypt sensitive data, e.g.,

— Username, password, credit card number

* Key management precautions

— Do not store encryption key in DB



Session Management Attacks



Why session management?

Request 1

HTTP is stateless

Response to request 1

Impossible to know if Reql and
Req2 are from same client

Request 2

Users would have to constantly

Response to request 2

re-authenticate
Session management

— Authenticate user once

— All subsequent requests are tied to
user

26



Browser
Post/login Username &
password

Set logged-in session token

Session tokens

Check
credentials

Validate

Request 1 and logged-in
session token

token

Response to request 1

Request 2 and logged-in
session token

Validate
token

Response to request 2

Browser

Get index.html

Response to get index.html and
set anonymous session token

Server

Get books.html and
anonymous session token

Response to get books.html
request

Post/login Username &
password

Set logged-in session token

Request 1 and logged-in
session token

Response to request 1

Validate
token

Check
credentials

Validate
token

27



Session management with cookie

Browser Server Check
Post/login Username & credential
password and index
session
Set cookie back with a
Store cookie
cookie

Validate
cookie

Request 1 with cookie

Request 2 with cookie

Validate
cookie

28



How cookie works

* Setting and sending cookies

— In header of HTTP response (Server to browser)
set-Cookie: token=1234; expire=Wed, 3-Aug-2016 08:00:00; path=/; domain = idi.ntnu.no

— In header of HTTP request (Browser to server, when
visit the domain of the same scope)

Cookie: token=1234

* Cookie protocol problem
— Sever only sees Cookie: NAME = VALUE
— Server does not see which domain sends the cookie

29



Session management attacks and
countermeasures

e Session token theft
e Session token predication attack
e Session fixation attack



Session token theft — Sniff network

* User
— Alice logs in login.site.com (HTTPS)
— Alice gets logged-in session token
— Alice visits non-encrypted.site.com (HTTP)

e Attacker

— Wait for Alice to login
— Steal the logged-in session token (in HTTP)

E.g. FireSheep (2010) sniff WiFi in wireless cafe
— Impersonate Alice to issue request

31



Session token theft — Logout problem

 What should happen during logout
— 1. Delete session token from client
— 2. Mark session token as expired on server
— Many web sites do (1) but not (2)!!
* Attacker
— If can impersonate once, can impersonate for a long
time
— E.g. Twitter sad story

» Token does not become invalid when user logs out

https://packetstormsecurity.com/files/119773/twitter-cookie.txt (2013)



https://packetstormsecurity.com/files/119773/twitter-cookie.txt

Solutions to Session token theft

Always send Session ID over encrypted channel
Remember to log out

Time out session ID

Delete expired session ID

Binding session token to client’s IP or computer



Binding session token to client’s IP or
Computer

e |dea:

— Overcome cookie protocol problem
e Sever only sees Cookie: NAME = VALUE
* Server does not see which domain sends the cookie

e Combine IP
— Possible issue: IP address changes (Wifi / 3G)

* Combine user agent: weak defense, but does
not hurt

34



Session token predication attack

* Predicable tokens, e.g., counter
* Non-predicable token means

— Seeing one or more token
— Should not be able to predict other tokens

e Solution:

— Do not invent own token generator algorithm

— Use token generator from known framework (e.g.,
ASP, Tomcat, Rails)



Session fixation attack

Get index.html

e User

Response to get index.html and — Visits site using anonymous token
set anonymous session token Validate ° AttaCker

token . ’
— QOverwrites user’s anonymous

token with own token

Get books.html and
anonymous session token

[ ) .
Responde to get books.html Check User:

request credentials — Logs in and gets anonymous token
elevated to logged-in token

e Attacker:

Post/login Qsername &
password

)
et logged-in session token T — Attacker’s token gets elevated to

logged-in token after user logs in
* Vulnerability: Sever elevates the

token

Request 1 and logged-in
session token

anonymous token without

Response to request 1

changing the value

36



How to overwrite session token?

 Tampering through network

— Alice visits non-encrypted.site.com (HTTP)

— Attacker injects into response to overwrite secure
cookie

Set-cookie: SSID=maliciousToken;
* Cross-site scripting
— How?

37



Mitigate session fixation

e Always issue a new session token, when
elevate from anonymous token to logged in
token



Cross-Site Scripting (XSS) Attack



An application vulnerable to XSS

Server

Client
Render: result.html

http://example.com/query?name = Bob
Name: X
XHQ Your query
Bob Return result.html as response Bob
</H2>
L <H2> Query results
<p>
Name: Bob Johnson
Query.html Query string (i.e. Bob) Tel: 123456
ECHOed back in result.html </p>
</H2>
result.html
Your query
Bob

Query results
Name: Bob Johnson
Tel: 123456

40



An application vulnerable to XSS
(cont’)

Server

Client
Render: result.html
http:/example.com/query?name =

<script>aIert(123)</scrip_t>\

Name:

\ <H2> Your query
Return result.html as response

<script>alert(123)</script> <script>alert(123)

</script>

Query
aQ : </H2>
uery string <H2> Query results
Query.htm| (i.e. <script> <p>
alter(123)</script>) None
ECHOed back in result.html </p>
</H2>

result.html

Your query ' ]
Executes at the client side

<script>alert(123)</script>

[ ") The page at http://example.com says: 1

Query results 123

None

41




Session token overwritten using XSS

e Attacker

Find out http://example.com/query? is vulnerable to XSS

Get a valid anonymous token from the example.com, e.g.,
exampleComToken=1234

Send this link to user
http://example.com/query?name = <script>

document.cookie = ‘exampleComToken = 1234’
</script>
Lure user to click this link

e User

Lured, clicks the link

» The browser executes the script document.cookie =

‘exampleComToken = 1234’ Overwrite user’s cookie value with
attacker’s cookie value, i.e., 1234

42


http://example.com/query?name
http://book.com/query?name

XSS exploits

Not just cookie theft/overwritten
Attacker injects malicious script in your page
Browser thinks it is your legitimate script

Typical sources of untrusted input

— Query

— User/profile page (first name, address, etc.)
— Forum/message board

— Blog

— Etc.



Reflected vs. Stored XSS

 Reflected XSS

— Script injected into a request
— Reflected immediately in response

e Stored XSS

— Script injected into a request

— Script stored somewhere (i.e., DB) in server
— Reflected repeatedly

— More easily spread



XSS mitigation

e Sanitize input data

» Sanitize / escape data inserted in web page

° Escape’ e.g.’ <H2> Your query
— HTML Escape i e
e < mmm) &lt; </H2>
e > mmm) &gt; $

b <H2> Your query
Return to browser as response &lt script &gt

— GaniEE)
&It script &gt

</H2>




XML External Entities (XXE)
Attack



XML External Entities

Also called EXTERNAL (PARSED) GENERAL ENTITY*
They refer to data that an XML processor has to parse

Useful for creating a common reference that can be
shared between multiple documents

<IENTITY name SYSTEM "URI">

External entity .
declaration Private/local

* http://xmlwriter.net/xml_guide/entity_declaration.shtml
47



XML External Entities Attack

Against an application that parses XML input

Untrusted XML input containing a reference to
an external entity is processed by a weakly
configured XML parser

Normal input

— Input: <test> hello</test>

— Output after XML parsing: hello

Malicious input

— Input: <!DOCTYPE test [IENTITY xxefile SYSTEM
“file://[etc/passwd”>]><test> &xxefile </test>

— Output: the content of file:///etc/passwd
(SENSITIVE INFORMATION DISCLOSED)

48



XML External Entities Countermeasure

* Disable XML external entity and DTD
orocessing

* |Input sanitization
— Whitelisting
— Web Application Firewalls



Insecure Deserialization Attack



Insecure Deserialization

e Serialization * Deserialization

Object student Object student
{(“ID”: “1234” {ID”: “1234”, “Course”: “4237”, “Grade”: “C"} {“ID”: “1234”,

“Course”: “4237”, “Course”: “42377,
”Grade”: llcll}’ ”Grade”: ”C”},

Serialized data is
often processed as

object. Developer
may forget to sanitize
it

Client Server

51



Insecure Deserialization Attack

* SQL injection

e Server side code
— “SELECT Grade FROM student WHERE user = “+ student.ID +”’; ”

e Attacker

— Tamper network data and inject SQL injection payload in
serialized data stream

{”ID”: o Iorlllzll ”’ (lcourse”: 114237”’ IIGrade”: IIC”}

* Developer does not sanitize serialized data. Then server
will deserialize the data and use it to formulate object

— “SELECT Grade FROM student WHERE user = ‘or ‘1 =1";



Insecure Deserialization
Countermeasure

Not to accept serialized objects from
untrusted sources

Implementing integrity checks such as digital
signatures on any serialized objects

Isolating and running code that deserializes in
low privilege environments



Insufficient Logging and
Monitoring



Insufficient Logging and Monitoring

* Vulnerability

— Auditable events, such as logins, failed logins, and
high-value transactions are not logged

— Warnings and errors generate no, inadequate, or
unclear log messages

— Logs of applications and APls are not monitored for
suspicious activity

— Logs are only stored locally

— Appropriate alerting thresholds and response
escalation processes are not in place or effective

— Unable to detect, escalate, or alert for active attacks
in real time or near real time.



Insufficient Logging and Monitoring
Countermeasure

Ensure all login, access control failures, and
server-side input validation failures can be
logged with sufficient user context to identify
suspicious or malicious accounts, and held for
sufficient time to allow delayed forensic
analysis

Establish effective monitoring and alerting
such that suspicious activities are detected
and responded to in a timely fashion



HTML Attacks, e.g., Clickjacking
Attack



Clickjacking Attack

What you see

What you actually
aww.owasP- click is this page, but
= you cannot see this
/ page, because it is
transparent

ccccc

Attacker overlays transparent frames to trick user into clicking on a button of
another page, which contains malicious behavior



Clickjacking Attack (Cont’)

MASKED IFRAME + & |~ Q

B

WwWww.owasp.com

Once the victim is surfing on the fictitious web page, he thinks that he is interacting with
the visible user interface, but effectively he is performing actions on the hidden page.
59



HTML feature the clickjacking attacker
exploits
* iframe and opacity

<html|>
<head><title></title></head>
<body>

<iframe id= “top” src= “ http://attacker _wants you to click page.html!” width =
“1000” height = “3000”>

<iframe id=“bottom” src = “ http://attacker wants you to see page.html|” width =
“1000” height = “3000”>

Transparent
<style type = “text/css”>
#top {position : absolute; top: Opx; left: Opx; opacity: 0.0}
#bottom {position: absolute; top:0px; left: Opx; opacity: 1.0}

</body>
</html>


http://attacker_wants_you_to_click_page.html/
http://want_you_see_page.com/

Defend against Clickjacking Attack

* Preventing other web pages from framing the
site you want to defend (e.g., Defending with
X-Frame-Options Response Headers )

* My site will not show in the frame, so that
nobody can use my site to fool victim

If Facebook set “X-Frame-Options: deny”,
<html> SRS "
<head><title></title></head> acebook will not show in <iFrame
<body> -

<iframe id="bottom" src="https://www.facebook.com/" width="1000“ height="3000">
<style type ="text/css">

#bottom {position: absolute; top:0px; left: Opx; opacity: 1.0}
</body>
</html>



Outline

* Typical Web app security risks and mitigations

» My studies related to Web app security

62



Study 1

* Evaluation of open-source IDE plugins for
detecting Web application security
vulnerabilities

* Research questions
— RQ1: What is the coverage?
— RQ2: How good is the performance?
— RQ3: How good is the usability?

The paper is published at EASE (Evaluation and Assessment of Software Engineering)

conference 2019.



IDE Plugins We Evaluate

rable-webapp/src/main/java/testcode/xmidecoder/XmiDecodeUtil java - Eclipse

roject Run Window Help

ASIDE o —

1} XmiDecodeUtiljava

package testcode.xmldecoder;

ESV D #import java.beans.XMLDecoder;

public class XmlDecodeUtil {

\

public static Object handleXml(InputStream in) {
2 XMLDecoder d = new XMLDecoder(in);
+ try {
Object result = d.readObject();
return result;
}
! finally {
po ugs d.close();
}
}
°
FindSecBugs <
# Bug Info
XmiDecodeUtil java: 9
+ Navigation
Vulnerable Code:
XMLDecoder d = new XMLDecoder (in)
try
Object result = d.readObject():

Solution:

The solution 1s to avoid using XMLDecoder to parse content from an untrusted source.

<
upplied data [Scary(5), High confidence]



Vulnerable Code We Use for
Evaluation

~

Functional Variant 1

~

1 2 3 .. n
Juliet Test Suite vl.3 Functional Variant 2
1 2 3 .. n

28,000 Test Cases

Functional Variant 3

112 Security Vulnerabilities 1 2 3 .. n
(CWE Entries) \ /
Type of Security Vulnerabilit

65




Vulnerabilities and the test cases of

the Juliet Test Suite

CWE
ID MName
Al Injection Total
rit=] OS Command Injection 444
59 SQL Injection 2220
90 LIDAP Injection A
113 HTTPEP Response Splitting 1332
134 Use of Externally-Controlled Format String B66
G443 X Path Injection 444
A2 Broken Authentication Total
256 Unprotected Storage of Credentials 37
259 Use of Hard-coded Password 111
321 Use of Hard-coded Cryptographic Key 37
523 Unprotected Transport of Credentials 17
549 Missing Password Field Masking 17
A3 Sensitive Data Exposure Total
315 Cleartext Storage of Sensitive Information in a Cookie 37
319 Cleartext Transmission of Sensitive Information 370
325 Missing Required Cryptographic Step 34
327 Use of a Broken or Risky Cryptographic Algorithm 34
328 Reversible One-Way Hash 51
329 Mot Using a Random I'V with CBC Mode 17
614 Sensitive Cookie in HTTPS Session Without "Secure’ Attribute 17
TH9 Use of a One-Way Hash without a Salt 17
TG0 Use of a One-Way Hash with a Predictable Salt 17
A5 Broken Access Control Total
23 Relative Path Traversal A4
36 Absolute Path Traversal A4
566 Auth. Bypass Through User-Controlled SO Primary Key 37
A6 Security Misconfiguration Total
395 MNullPointerException Catch to Detect NMULL Pointer Deference 17
396 Declaration of Catch for Generic Exception 34
397 Declaration of Throws for Generic Exception 4
AT Cross-Site Scripting Total
850 Basic X585 G666
&1 Improper Neutralization of Script in an Error Message 333
83 Improper Neutralization of Script in Attributes in a Web Page 333



Result of RQ1: Coverage

CWE IDE-Integrated Static Analysis Tools
1D ASIDE ESVD LAPSE+ SpotBugs FindSecBugs
Al Injection Total TP FP TP FP TP FP TP FP TP FP
a8 444 185 0 49 o 444 624 - - 378 50
39 2220 3 3 1440 2280 2220 3060 2220 3000 1900 300
90 444 185 o o 0 o - - 379 50
113 1332 535 795 0 0 o 0 57 0 989 0
134 666 148 212 - - - - - - 462 0
543 444 185 265 0 0 444 1248 - - 379 49
A2 Broken Authentication Total TP FP TP FP TE FP TE FP TP FP
256 a7 - - - - - - - - - -
259 111 - - - - - - 15 0 48 0
321 a7 - - - - - - - - 16 0
523 17 - - - - - - - - - -
549 17 - - - - - - - - - -
A3 Sensitive Data Exposure Total TP FP TP FP TP FP TP FP TP FP
315 a7 - - - - - - - - o 0
319 370 = = = = = = = = 259 369
325 34 - - - - - - - - - -
327 34 = = = = = = = = 17 0
328 51 - - - - - - - - 51 0
329 17 - - - - - - - - 17 0
614 17 - - - - - - - - 16 0
759 17 - - - - - - - - -
760 17 - - - - - - - - - -
A5 Broken Access Control Total TP FP TP FP TP FE TR FP TP FP
23 444 108 0 0 0 444 624 19 378 52
36 444 108 0 o o 444 624 16 0 378 49
566 37 36 0 - - 37 0 - - - -
Ab Security Misconfiguration Total TP FP TP FP TP FP TP FP TP FP
395 17 = 0 0 = = = = = =
396 34 - - o o - - - - - -
357 4 = = 0 0 = = = = = =
AT Cross-Site Scripting Total TP FP TP FP TP FP TP FP TP FP
B0 666 642 900 28 0 666 936 19 656 76
21 333 321 450 14 o 0 o 19 0 333 38
83 333 108 0 14 0 333 468 19 333 38




Claimed vs. Confirmed Coverage

Tools Confirmed Coverage | Claimed Coverage
ASIDE 12 41% 12 41%
ESVD 5 17% V¥ 13 45%
LAPSE+ 3 28% ¥ 11 38%
SpotBugs 8 28% 8 28%
FindSecBugs 18 62% V¥ 19 66%

68




Result of RQ2: Performance

CWE IDE-Integrated Static Analysis Tools

1D ASIDE ESVD LAPSE+ SpotBugs FindSecBugs
Al Injection Total TP FP TP FP TP FP TP FP TP FP
73 A4 185 0 49 0 A4 524 _ _ 378 =0
59 2220 3 3 1440 2280 2220 3060 2220 J000 1900 300
90 444 185 o o o 0 o - - 379 50
113 1332 535 795 0 0 o 0 57 o 989 o
134 alilil 148 212 - - - - - - 462 o
543 444 185 265 0 0 444 1248 - - 379 49
A2 Broken Authentication Total TP FP TP FP TE FP TE FP TP FP
256 a7 - - - - - - - - - -
259 111 - - - - - - 15 o 48 o
321 a7 - - - - - - - - 16 o
523 17 - - - - - - - - - -
549 17 - - - - - - - - - -
A3 Sensitive Data Exposure Total TP FP TP FP TP FP TP FP TP FP
315 a7 - - - - - - - - o 0
319 370 = = = = = = = = 259 369
325 34 - - - - - - - - - -
327 34 = = = = = = = = 17 o
328 51 - - - - - - - - 51 o
329 17 - - - - - - - - 17 o
614 17 - - - - - - - - 16 o
759 17 - - - - - - - - -
760 17 - - - - - - - - - -
AS Broken Access Coptrol Igtal TP EP TP Ep TP EP TP EP TP EP
23 A4 108 ] 0 0 A4 624 19 ] 378 52
36 444 108 o o o 444 624 16 o 378 49
566 37 36 a - - 37 o - - - -
Ab Security Misconfiguration Total TP FP TP FP TP FP TP FP TP FP
395 17 = 0 0 = = = = = =
396 34 - - o o - - - - - -
357 4 = = 0 0 = = = = = =
AT Cross-Site Scripting Total TP FP TP FP TP FP TP FP TP FP
B0 666 642 900 28 o 666 936 19 o 656 76
21 333 321 450 14 o 0 o 19 o 333 38
83 333 108 1] 14 ] 333 468 19 o 333 38




A study™ at Microsoft shows that “90% of the

participants are willing to accept a 5% false

positive rate, while 47% of developers accept up

to a 15% false positive rate.” of source code

analysis tools.

ASIDE

ESVD

LAPSE+

SpotBugs

FindSecBugs

Averaged false positiverate| ~ 29%

P

* Maria Christakis and Christian Bird. 2016. What developers want and need from
program analysis: an empirical study. InProceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering

70




Result of RQ3: Usability

ASIDE ESVD LAPSE+ SpotBugs FindSecBugs
What is the problem X v v v v
Detailed o
] ) Why is it a problem N/A * ® v v
information

How to fix the problem N/A X X X v

Prioritized output X v X v v

Quick fixes v v X X X
(E)arly or (L)ate detection E E L E/L E/L

Can suppress warnings v v X X X

Eclipse Environment integration v v v v v

Available on Eclipse Marketplace X X X v X

{l)mmediate or (N)egotiated interruptions N N N N N
Easily extendable X x X v X

Possible to analyze single file only X X X v vy

Possible to analyze single method only X X X X X




Study 2

* Understanding and improving the open-
source IDE plugins for better performance

* Research questions
— RQ1: How is the plugin implemented?
— RQ2: Why is the performance poor?
— RQ3: How to improve the performance?



Study design
Read the doc. and source code of the plugins

For each false positive and false negative result,
investigate why it happens and generate
hypotheses

Improve the code and re-test to verify the
hypotheses

Focus only on ESVD, SpotBug, and FindSecBug



How are the test cases in Juliet Test
Suite structured?

e Source variant

/* SOURCE VARIANT: Read data using an outbound tcp connection */
socket = new Socket("host.example.org", 39544);

reader = new InputStreamReader(socket.getInputStream(), "UTF-8");
readerBuffered = new BufferedReader(reader)

data = readerBuffered.readline();

/% SOURCE VARIANT: Read data from a file */
file = new File("C:\\data.txt");

stream = new FileInputStream(file);

reader = new InputStreamReader(stream, "UTF-8");
readerBuffered = new BufferedReader (reader) ;
data = readerBuffered.readlLine() ;

74




How are the test cases in Juliet Test

Suite structured (cont’)?

* Control flow variant, e.g.,

Flow Variant
02
03
04

Condition

The boolean value true.

The equation 5==5.

A private static final constant set to the boolean value true.

* Data flow variant, e.g.,

Flow Variant
31

41
42

Description

Data is copied within the same method.

Data is passed as an argument from one method to another in the
same class.

Data is returned from one method to another in the same class.




Result of RQ1: How is the plugin
implemented?

* ESVD: Java source code, taint analysis

e SpotBug: Bytecode, taint analysis

* FindSecBug: Bytecode, taint analysis

|

Load sources and
sinks

J

Look at sink 1
arguments J

Y

|

Find all methods in}

For each method

|

Yes

State of

argument
tainted?

Is

dangerous
sink?

For each invoke
instruction

Yes

v

Y Y

Create control-flow
graph

order of execution

Execute data-flow
analysis, identify if
data has tainted

state

Calculate confidenc
lgnore and continue and report
vulnerability 76

|




Result of RQ2: Why poor
performance?

* Missing sources and sinks, e.g.,

— Only HttpServletRequest.getParameter(),
HttpServletRequest.geteQueryString(), and
HttpServletRequest.getHeader() are in sources
defined in Spotbug, which lead to its bad recall of
“HTTP Response Splitting” vulnerability

* |nadequate algorithm for analyzing control
and data flow variants



Result of RQ2: Why poor performance
(cont’)?

e Bad principle and design, e.g.,

— Spotbug and ESVD report all concatenated string
variables as SQL injection vulnerabilities, which
leads to high false positive.

* Uncertain detections are still reported, which
leads to high false positive

e We also find limitations of the Julie Test Suite



Result of RQ3: How to improve
performance?

* After proof-of-concept improvements

SporBug FlndseBUg
Injection \
Rec. Prec Prec Disc

. Disc. Rec. . Rec. Prec. Disc.
CWE-78 RQ2 | 11% 100% 11% | 0% 0% 0% | 86% 86% 72%
05 Cmd Inj. RQ3 | 19% 100% 19% | 0% 0% 0% | 89% 100% 86Y%
CWE-89 RQ2 | 65% 30% 0% |100% 43% 0% | 86% 86% 72%
SQL Inj. RQ3 | 22% 100% 22% | 84% 70% 49% | 89% 100% 86Y%
CWE-90 RQ2 | 0% 0% 0% | 0% 0% 0% | 86% 86% 72%
LDAP Inj. RQ3 | 19% 100% 19% | 0% 0% 0% | 89% 100% 86%
CWE-113 RQ2 | 0% 0% 0% | 4% 100% 4% | 74% 100% 74%
HTTP R.S. RQ3 | 19% 100% 19% | 47% 100% 47% | 89% 100% 86%
CWE-643 RQ2 | 0% 0% 0% | 0% 0% 0% | 86% 86% 72%
XPath Inj. RQ3| 0% 0% 0% | 0% 0% 0% | 8% 100% 86%




Result of RQ3: How to improve
performance (cont’)?

* After proof-of-concept improvements

SporBug FindSeBug

\

Rec. Prec. Disc. Rec. Prec Disc. Rec. Prec. Disc.

AN

Broken Access Control - Path Traversal

CWE-23 RQ2 | 11% 100% 11% | 4% 100% 4% | 86% 86% 72%
Rel. Path T. RQ3 | 19% 100% 19% | 47% 100% 47% | 100% 88%  86%
CWE-36 RQ2 | 11% 100% 11% | 4% 100% 4% | 86% 86% 72%
Abs. Path T. RQ3 | 19% 100% 19% | 40% 100% 40% | 100% 88%  86%

Cross-Site Scripting
Rec. Prec. Disc. Rec. Prec. Disc. Rec. Prec. Disc.
CWE-80 RQ2 | 11% 100% 11% | 3% 100% 3% | 100% 88%  86%

Basic XS8 RQ3 | 19% 100% 19% | 46% 100% 46% | 89% 100% 86%
CWE-81 RQ2 | 11% 100% 11% | 6% 100% 6% | 100% 88%  86%
X3S Error RQ3 | 19% 100% 19% | 46% 100% 46% | 89% 100% 86%
CWE-83 RQ2 | 11% 100% 11% | 6% 100% 6% | 100% 88%  86%
XSS Attrib. RQ3 | 19% 100% 19% | 46% 100% 46% | 89% 100% 86%



Summary

* Many Web app vulnerabilities are about
details

* Developers need to understand the risks and
to develop secure code from the first place

* Tools to help developers are not perfect and
need improvements



