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Modern Cryptology
From Katz and Lindell’s Classic Textbook

Three Principles

1 Formal Definitions: “giving a clear description
of what threats are in scope and what security
guarantees are desired”

2 Precise Assumptions: “that are simpler to state,
since [they] are easier to study and (potentially)
refute”

3 Proofs of Security: “that a construction satisfies
a definition under certain specified
assumptions”
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FDH-RSA Cryptosystem
Black-box perspective of chosen-message attacks

A

(N, d, e)←$Kg S ← H(M)d mod N

M S

M̂ ,Ŝ

N, e

Adveuf-cma
FDH−RSA(A) = Pr

[
Ŝe mod N = H(M̂), M̂ fresh

]
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The Rise of Side-Channels
Paul Kocher’s Revolution

https://www.paulkocher.com/

1996 Timing Attacks
1999 Simple and Di�erential Power Analysis

(DPA)
(w. Joshua Ja�e & Benjamin Jun)

2016 https://www.youtube.com/
watch?v=6lt7ExN6Kw4

Power Analysis

Measuring power consumption over time allows (relatively)
easy recovery of secret keys

https://www.paulkocher.com/
https://www.youtube.com/watch?v=6lt7ExN6Kw4
https://www.youtube.com/watch?v=6lt7ExN6Kw4
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SPA: Simple Power Analysis
A Simple Attack Against Unprotected RSA

What is SPA
SPA exploits data-dependent di�erences in power consumption of a single
operation to recover secret information.

S ← H(m)d mod N

s← 1, x ← H(m)

while d > 0
if d odd then
s← s · x mod N

x ← x2 mod N
d← bd/2c

Simple Attack

Assume you can tell multiplications
and squarings apart.
So you observe something like
SMSSMSSM
Corresponds to exponent
(10101)2 = 21
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DPA: Differential Power Analysis
The workhorse of side-channel attacks

What is DPA
DPA exploits data-dependent correlation in power consumption over
multiple, related operations to recover secret information.

Power of DPA
Any unprotected implementation will eventually be susceptible.

Countermeasures
All implementations will need protection against side channels.
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Power Analysis Attacks
Stefan Mangard, Elisabeth Oswald, and Thomas Popp’s Classic

Revealing the Secrets of Smart Cards

“first comprehensive treatment of power
analysis attacks and countermeasures”
Aimed at the practitioner
From 2007⇒ nomodern ideas and theory



Outline

1 How Di�erential Power Attacks Work
Our Setting
A Typical Pipeline for Key Recovery
Profiled Attack Example

2 Key Enumeration and Ranking
Enumeration
Ranking

3 Conclusion
Want to Learn More?
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Modern Cryptology
Black-box Blockciphers

What is a Blockcipher

A blockcipherE is family of keyed permutations

E : {0, 1}k × {0, 1}n → {0, 1}n

where k is the key length and n the block length

Blockcipher Usage

Use amode-of-operation like GCM to create an encryption scheme
GCM security proof assumes the blockcipherE is a “PRP”
SoE is treated as a black box
What happens if you can see it “work”?
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Modern Cryptology
AES-128
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Design

k = 128, n = 128, where 128 = 16× 8 (16 bytes)
10 rounds of whitened SP network
Non-linearity comes from bytewise S-boxes

Images: TikZ for Cryptographers, Jérémy Jean, www.iacr.org/authors/tikz/

www.iacr.org/authors/tikz/
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SCALE: A Resource by Dan Page
https://github.com/danpage/scale

Side-Channel Attack Lab. Exercises
Provides a suite of material related to side-channel
(and fault) attacks that is low-cost, accessible,
relevant, coherent, and e�ective.

SCALE Data Sets

1 Four platforms: an Atmel atmega328p (an AVR) plus three NXP ARM
Cortex-M processors

2 Implementation uses an 8-bit datapath and look-up tables for the
S-box and xtime operations (but code not known)

3 2× 1000 traces of AES-128 each (known vs. unknown key)
4 Traces acquired using a Picoscope 2206B, using triggers for alignment

https://github.com/danpage/scale
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Plotting a Trace
SCALE’s AES-128 on an Atmel
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A full trace k = 2B7E151628AED2A6ABF7158809CF4F3C
Total of 132, 292 points
You can see a pattern repeating roughly 10 times
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Finding the Rounds
Using crosscorrelation
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Crosscorrelation of a trace
Compares howwell shi�s of the trace match the original

ci =
∑
j

ajai+j

Leads to round duration of 12421
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Finding the Rounds
Using crosscorrelation
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Plotting the Rounds Jointly

Left Rounds 1 and 2 superimposed
Round 1 is building up power

Right Rounds 5 and 6 superimposed
Peaks and jittery areas match well
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Plotting a Trace
SCALE’s AES-128 on an Atmel
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3rd round close up

1 Some peaks, some jitter
2 Hard to really discern much of interest...
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Signal versus Noise
What determines the power consumption?
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Engineer’s Perspective (MOP, Ch. 4)

Ptotal = Pop + Pdata + Pel. noise + Pconst

Pop d.o. the operation
Pdata d.o. the data

Pel. noise electrical noise
Pconst constant base
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Signal versus Noise
What determines the power consumption?
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Engineer’s Perspective (MOP, Ch. 4)

Pop + Pdata = Pexp + Psw. noise

Pop d.o. the operation
Pdata d.o. the data

Pexp exploitable signal
Psw. noise switching noise



How Di�erential Power Attacks Work Our Setting 15

Signal versus Noise
What determines the power consumption?
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Engineer’s Perspective (MOP, Ch. 4)

Ptotal = Pexp + Psw. noise + Pel. noise + Pconst

Pel. noise electrical noise
Pconst constant base

Pexp exploitable signal
Psw. noise switching noise
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Signal versus Noise
What determines the power consumption?
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Theoretician’s Perspective

Ptotal = f(data) +N (0, σ)

f(data)mainly models Pexp, function f incorporates Pop and Pconst
σ depends on Psw. noise and Pel. noise
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Signal versus Noise
What determines the power consumption?
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Some Caveats
1 Which operations are performed on which registers can be relevant
2 Looking at multiple points might lead to multivariate dependencies
3 Sometimes noise levels (σ) are data-dependent
4 The function f and noise level σ are unknown
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Signal versus Noise
What determines the power consumption?
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Atmel AES, Based on 1000 traces

Assuming no branches in the execution
Left Pointwise sample mean: Pconst + Pop
Right Pointwise sample variance: Pdata + Pel. noise

Both Pexp and Psw. noise depend on your target...
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Signal versus Noise
Intermediate values and target selection
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The Locality of Leakage

Intermediate value:
the (few) byte(s) involved in a
specific operation
Locality assumption:
leakage primarily depends on the
intermediate value operated upon
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Signal versus Noise
Intermediate values and target selection
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The Locality of Leakage

Intermediate value:
the (few) byte(s) involved in a
specific operation
Locality assumption:
leakage primarily depends on the
intermediate value operated upon

Target intermediate
value captured by
Pexp
The “rest”
contributes to
Psw. noise
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Signal versus Noise
Intermediate values and target selection
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First Round, Byte Pos. “0”, keybyte 2B

Left Average leakage based on select plaintext values
Right Average leakage based on select sbox inputs

Initial peak correlates more with plaintext
Final peak correlates more with sbox input
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SNR: Signal to Noise Ratio
Visualizing “Simple” Leakage

Mangard’s SNR

Recall we said Ptotal = f(data) +N (0, σ)
f(data) is called the signal, the other term the noise

SNR =
Var(signal)
Var(noise)

=
Vardataf
σ2
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SNR: Signal to Noise Ratio
Visualizing “Simple” Leakage
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Round 1 SNRs, sample estimate

16 Sbox inputs as separate targets
Fixed key, so equivalent to 16 plaintext bytes
Clearly see the di�erent bytes leak repeatedly, one a�er the other
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SNR: Signal to Noise Ratio
Visualizing “Simple” Leakage
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Round 1 SNRs, zoom in

Clearly see the di�erent bytes leak repeatedly, one a�er the other
Peaks di�er in height
At the bases consecutive bytes leak jointly
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Hamming Weight and Hamming Distance
Two Common Leakage Models

Hamming Weight

Power consumption is linear in the Hamming weight of the target data

f(data) = a · HW(data) + b

Correspond to model where power depends primarily on “setting” bits

Hamming Distance

Power consumption is linear in the Hamming distance of the target data
input with the output

f(data) = a · HD(datain, dataout) + b

Correspond to model where power depends primarily on “flipping” bits
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SNR: Signal to Noise Ratio
AES Atmel Hamming Leakage
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Round 1, “0” byte SNR vs Sbox input Hamming weight

plaintext Hamming weight (right)
Explains the third SNR peak (le�)
No non-linearity⇒ hard to exploit
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SNR: Signal to Noise Ratio
AES Atmel Hamming Leakage
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Round 1, “0” byte SNR vs Sbox output Hamming weight

Sbox input Hamming weight (right)
Explains the final two SNR peaks (le�)
Non-linearity⇒ exploitable for key recovery
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Kerckhoffs Principle
Known Knowns and Unkown Unknowns

Kerckhoffs’s Principle

A cryptosystem’s security should
reside in the the secrecy of its keys (known unknown)
without any need to keep the cryptosystem secure (known known)

What about Implementations

What device is being used?
Which cryptosystem is implemented how?
Auxiliary inputs (plaintexts/ciphertexts/randomness)?
But what about the leakage such as power consumption?
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Kerckhoffs Principle
Known Knowns and Unkown Unknowns

Kerckhoffs’s Principle

A cryptosystem’s security should
reside in the the secrecy of its keys (known unknown)
without any need to keep the cryptosystem secure (known known)

What about Power Consumption?

Realistically, even if you knowwhat operations are being performed, how a
device leaks is too unpredictable (unknown unknown).
Not-Quite-Kerckho� Principle



How Di�erential Power Attacks Work A Typical Pipeline for Key Recovery 21

Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg

Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

L← Leak(K,X)

K̂

The naked guess-the-key game: Advkr
E (A) = Pr

[
K∗ = K̂

]
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg

Leak←$L

assert Leak ∈ L
C ← EK∗ (X)

L←$ Leak(K∗, X)

Leak, X L

L← Leak(K,X)

K̂

The adversary selects how the leakage is derived
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg
Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

X L

Leak

L← Leak(K,X)

K̂

The adversary knows exactly how tomodel the leakage
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg
Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

X L

L← Leak(K,X)

K,X

L

K̂

The adversary learns how the leakage profile θ̂ looks:
Leak(data) ≈ Mθ̂(data)
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg
Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

X L

L← Leak(K,X)

K̂

The adversary infers a leakage modelM:
Leak(data) ≈ M(data)
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

Different Scenarios
1 The adversary selects how the leakage is derived
includes leakage-resilience and formal probingmodels

2 The adversary knows exactly how tomodel the leakage
used for simulated leakage models

3 The adversary learns how the leakage profile looks
captures real-life profiled attacks

4 The adversary infers a leakage model
captures real-life attackswithout profiling

Caveat: “Stronger” models (higher in the list) tend to be relative to less real-
istic and potentially “weaker” forms of leakage
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A Typical Side-Channel Attack Pipeline

A Acquire training data
control over keys and plaintexts
signal processing to clean up traces

B Build a profile
1 select features or PoIs
2 fix modelM, estimate parameters θ̂

C Collect target traces
unknown target key, known plaintexts
use signal processing as before

D Distinguish
1 extract features or PoIs
2 using modelM and parameters θ̂,
for each key candidate,
compute distinguishing score
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A Typical Side-Channel Attack Pipeline
Acquisition and Collection

Experimental setup

Use oscilloscope to measure power
(Optional) Use triggers to align data
Use signal processing to clean up raw trace

⇐ see the textbook for details!
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A Typical Side-Channel Attack Pipeline
Feature Extraction and Points of Interest
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Where does a target intermediate leak?

An intermediate leaks mostly where it is being used
Good to identify where this is
Then reduce dimension of interesting points if possible

Easiest is to select a point of interest



How Di�erential Power Attacks Work A Typical Pipeline for Key Recovery 25

A Typical Side-Channel Attack Pipeline
Build a Model, Profiling
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How does a target intermediate leak?

Assume Leak(data) = Mθ(data) for knownmodelM
Estimate the “real” parameters θ by θ̂
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A Typical Side-Channel Attack Pipeline
Build a Model, Profiling

Lessons from Machine Learning

Suppose the real leakage follows data-dependent distribution Leak(data)
1 Assume that unknown Leak(data) follows knownmodel Mwith
unknown parameters θ

Leak(data) ≈ Mθ(data)

2 Estimate the “real” parameters θ by θ̂

Mθ(data) ≈ Mθ̂(data)

Warning: More complex models have smallermodelling errors (first point)
at the expense of larger estimation errors (second point)
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A Typical Side-Channel Attack Pipeline
Distinguish using Divide-and-Conquer
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Divide-and-Conquer

Idea: Recover each subkey byte separately
For all 256 candidates, calculate a distinguishing score
The lowest (or highest) score indicates the likely true subkey byte

Guess all 16 subkey bytes correctly⇔ guess the AES key correctly
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A Typical Side-Channel Attack Pipeline
Distinguish using Divide-and-Conquer

k0 score
0 0.123. . .
1 0.127. . .
...

...
255 0.238. . .

k1 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

. . .

k15 score
0 0.184. . .
1 0.167. . .
...

...
255 0.152. . .

Divide-and-Conquer

Idea: Recover each subkey byte separately
For all 256 candidates, calculate a distinguishing score
The lowest (or highest) score indicates the likely true subkey byte

Guess all 16 subkey bytes correctly⇔ guess the AES key correctly
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A Typical Side-Channel Attack Pipeline
Distinguish using Divide-and-Conquer

k0 score
0 0.123. . .
1 0.127. . .
...

...
255 0.238. . .

k1 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

. . .

k15 score
0 0.184. . .
1 0.167. . .
...

...
255 0.152. . .

Distinguishing Scores using Leak(data) ≈ Mθ̂(data)

1 Assume data relevant for leakage only depends on one subkey
(easiest to attack AES first or last round)

2 For each 256 possibilities and each trace,
calculate how the modelled leakage would look

3 Compare modelled leakage with observed trace, combine into score
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