Radboud University

e
Uorres

S
&

MiNeS

Innovations in permutation-based crypto

Joan Daemen’

based on joint work with Guido Bertoni3, Seth Hoffert, Bart Mennink?,
Michaél Peeters?, Gilles Van Assche? and Ronny Van Keer?

COINS Winter School, 5-10 May 2019, Finse

TRadboud University 2STMicroelectronics Security Pattern

The simplest possible keyed cryptographic function

The ideal cryptographic function

» What would the ideal cryptographic function look like?
» Itis called a Random Oracle (RO) [Bellare-Rogaway 1993]
» Random Oracle can be built but is not practical

Random Oracle Inc.: letter answering service!

P NDOM,
] R RACLE
2N by 2 7 g

Random Oracle Inc.

NDO
‘é’}q/_\ct_e

1. Letter with (m, £) arrives at Random Oracle Inc.

Random Oracle Inc.

3a. If no (m,Z) in archive, employee generates random Z with |Z| = ¢
3b. Else if |Z| < ¢, employee extends Z to length £ with random string

Random Oracle Inc.

4. Manager copies Z

Random Oracle Inc.

VAT

L0 e 4 \\\ ‘ ,‘\
) S0 m\»\\’)} \l//(/d
; ;’-H?A" i) "’ " 1 ‘.‘V

4. Manager puts file with (m, Z) (back) in archive

Random Oracle Inc.

5. Manager sends response Z truncated to length ¢ to sender

Security notion as a distinguishing game

m, ¢ Z

Distinguishing game for an Adversary A:

» A faces system S that it can query (m,{) to get Z
» but does not know the world it lives in
e inrealworld S = Fg
e inidealworld S=RO
» in both worlds, A has the specifications of F
» A can make queries and do computations
» and should guess the world it is in

Security notion: PRF security

m, ¢ Z

» Fis PRF-secure if Pr(success) is 1/2 + € with € negligible
e for any reasonable amount of queries and computation
e we call 2e the (RO distinguishing) advantage Adv
» Quantifying effort of adversary A
e online complexity M: sum of data |m| + £ over all queries
e offline complexity N: computational effort (per some unit)
» PRF security of Fis a bound on Adv as f(M, N)
» Implication: for any attack Pr(succ.|F) < f(M, N) 4+ Pr(succ.|RO)

1

What can we do with (PRF) security bounds?

m, ¢ Z

v

We cannot prove a bound for any concrete F
But we can formulate one and use in a security claim for F

e statement on expected security

e made by the designers (or standardization organization)
» Claim serves as challenge for cryptanalysts

e break: distinguishing attack with Adv > f(M, N)

» Claim serves as security specification for user

e ..as longas itis not broken
Assurance grows as years and public scrutiny pile up

v

v

Back to our cryptographic function F

What can we do with a concrete F?

Say we have:

with claim, say,

N M2
AdVSﬁ*‘zzﬁ

for K chosen uniformly from space of 256-bit keys

13

Stream encryption

plaintext gl wIEN ciphertext

14

Message authentication (MAC)

plaintext

plaintext

15

Authenticated encryption

plaintext

plaintext gl

16

String sequence input and incrementality

— packet #1 === packet #2 === packet #3

packet #1 packet #2 packet #3

Fk (P(3) oP@ o Pm)

We call this: doubly-extendable cryptographic keyed function

deck function

Session authenticated encryption (SAE) [KT, SAC 2011]

Initialization taking nonce N
T« 0"+ Fg (N)

history < N

return tag T of length t

Wrap taking metadata A and plaintext P

C < P+ Fg (A o history)

T < 0! + Fi (Co Ao history)

history <— C o A o history

return ciphertext C of length |P| and tag T of length t

Synthetic initialization value (SIV) of [KT, eprint 2016/1188]

Unwrap taking metadata A, ciphertext Cand tag T
P C+Fc(ToA)

T+ 0+ Fc(PoA)

if T # T then return error!

else return plaintext P of length |C]|

Variant of SIV of [Rogaway & Shrimpton, EC 2006]

19

Wide block cipher (WBC), as in [KT, eprint 2016/1188]

Encipher P with K and tweak W
(LLR) <« split(P)
Ro <~ Ry + HK(L o O)
L «—L + Gk(RoWo?) { ® }—{ G 1) ‘<—
—~R + Gg(LoWoO) |
Lo — Ly + HK(R o 1)
C ~L || R
]
return ciphertext C of length |P|

Inspired by HHFHFH of [Bernstein, Nandi & Sarkar, Dagstuhl 2016]

20

How to build a deck function?

By icelight (flickr.com)

21

Sponge [Keccak Team, Ecrypt 2008]

Y Y U O U
absorbingisqueezing

» Uses b-bit permutation, has rate r and capacity cwithb =r+c¢
» Taking K as first part of input gives a deck function (almost)

» We can prove Adv < 2’2"% + % if fand K are randomly chosen
» So sponge construction is sound but f must still be built

22

Intermezzo: how to build a suitable permutation f?

» Same as a block cipher (e.g. AES):
e design an efficient round function and repeat that
e resistance to attacks grows (hopefully fast) with # rounds
e determine # rounds that is broken and take some more
» Steps of a good round function:
e nonlinear step: combines nearby bits non-linearly
e mixing layer: combines nearby bits linearly
e transposition layer: moves nearby bits far away
» Difference with block ciphers
e no key schedule nor round keys but instead round
constants
e no need for efficient inverse

23

For example: KECCAK-p[1600, n,]

=

1 Add Round Constant

63

CIrrry
Wi &> DR

PP i

e

0 diffusion

A
[

% non-linearity T breaking horizontal /vertical alignment

» Bit-oriented round function with high amount of symmetry:
e software with cyclic shift and Boolean instructions only
e fast and compact in hardware

» Non-linear step x: algebraic degree 2

» Lightweight round function with heavy inverse

24

Speed up absorbing: sponge — donkeySponge [KT, DIAC 2012]

)
L] ¢
N
f f f fl " f
¢ U
L Nabsorb J L Nsqueeze — |

donkey sponge

25

Incrementality: duplex [Keccak Team, SAC 2011]

) Zo (41 V4 1 %)) Z2
pad) (trunc pad) (trunc pad) (trunc
e e e

r||0 D S S
| Jouter |/ f f
inner
c||0
L -/ -/ -/
initialize duplexing duplexing duplexing

26

Speed up: duplex — monkeyDuplex [KT, DIAC 2012]

I [7; gj Z;
| 4 | L]
. d .
@) 0D @
> > L > > U
f f
/ /
Nstart Nstep Nstride

Very popular:

» Adopted by half a dozen CAESAR submissions
» including our proposal KETJE [KT, CAESAR 2014]

27

Consolidation: Full-state keyed duplex

Z o Z o Z o
ol oAl
Y f ,L f f ,L
iv ¥ J > - >

[Mennink, Reyhanitabar, & Vizar, Asiacrypt 2015]

[Daemen, Mennink & Van Assche, Asiacrypt 2017]

28

How to build a parallelizable deck function?

by Peter Miller (flick.com)

29

How to build a parallelizable deck function?

.

w .

by Barilla Food Service

29

Farfalle: early attempt [T 2014-2016]

» Reminds of Protected Counter Sums [Bernstein, “stretch”, JOC 1999]
» In Protected Counter Sums, fis assumed to be a PRF
» We had in mind for f: KEcCAK-p[1600, n,] with few rounds

30

Problem of early Farfalle: higher-order-differential collisions

» Differential Ayf(x) = f(x+ v) +f(x) is kind of derivative of f
» The algebraic degree of A,f is at most that of f minus one

» Derive Afin turn:
AyAF(x) = f(x+ v+ u) + f(x+u) + flx +v) +f(x)
» d-th derivative is Ayf(x) = ¥y f(x + v) with V a vector space
» Degree of n,-round KECCAK-p[1600, ny|: 2™
» if dim(V) = 2": Ayf(x) is a constant

31

Problem of early Farfalle: higher-order-differential collisions

Collision-generating attack:

» Choose a message m of 2" blocks m; that form a vector space
Encodings of block numbers also form a vector space

Inputs to f also form a vector space

Accumulator is a constant independent of m or k

n-fold multicollision with online cost M = n22™ input blocks
With carefully chosen blocks m: this reduces to M = n22™ "
Practical up to n, = 6: each such message is only 0.5 Terabyte

vVvvyVvyYVyy

32

Higher-order-differential collisions: attempts at mitigation

Fancy encoding enc(i) of block numbers

» To fully prevent high-dimensional affine spaces at f input
» We tried many things ...
» Nicest one: enc(i) = x' mod p(x)||x~" mod p(x)
e with p(x) an primitive polynomial
e computing enc(i+ 1) from enc(i) takes two LFSR updates
e No affine spaces exist with dimension > 2 for same reason
that AES S-box has differential uniformity 4

33

Higher-order-differential collisions: chosen mitigation

» Not to prevent affine spaces but just to make them hard to find
» Computing of f-input for block i: m; 4+ (x'k) mod p(x)

» We call this input mask rolling
e kis full-width secret mask derived from user key K

e If p(x) not sparse, choosing m; to form exploitable affine

space at input to fis infeasible
» Additional benefit: increases rate of blocks m; to full-width

KH10*

34

Farfalle: the final construction (modulo some details)

» Derivation of mask k from user key K using py,

» Input mask rolling and p. to prevent higher-order-differentials
» State rolling, pe and mask against state retrieval at output

» Middle pq against accumulator-affine-space attack

» Input-output attacks have to deal with p, o pq o pec

35

Farfalle: accumulator-affine-space attack
KHIO*

Apply 22 2-block messages: mo||m1, mj||ms, mo||m}, mg|im;
Let a; = pc(m; + k;) and a] = pc(m} + k;)

Affine space in accumulator: ag + a1, ap + a1, ag + a;, ag, + d;
Generalizes to dim. d taking 2¢ messages of each d blocks
Can distinguish construction if p. o pq has too low degree

vVvyvVvyVvyYyvyypy

This is what forced us to add pq

36

Farfalle now [Keccak Team + Seth Hoffert, ToSC 2018]
K|10*

» LFSR input mask rolling and p. against accumulator collisions

» Middle pq against accumulator-affine-space attack

» NLFSR state rolling, p. and mask against state retrieval at output
» Input-output attacks have to deal with pe o pq © pe

37

Multi-string input and incrementality
1<H10*

blank index{l@‘c— k

38

KRAVATTE as in IACR eprint July 2017
K]J10*

» p; = KECCAK-p[1600, n;| with # rounds in py, Pc, Pa, Pe: 6644
» Input mask and state rolling with LFSR over 320 of 1600 bits
» With claim targeting 128-bit security

39

KRAVATTE IACR eprint July 2017 under pressure

KHuy*»
k @) ¥
et Ao

» October 2017: attacks by Colin Chaigneau, Thomas Fuhr, Henri
Gilbert, Jian Guo, Jérémy Jean, Jean-René Reinhard and Ling Song

» Extension of accumulator-affine-space attack

e degree of p. o pq is 28, so infeasible?

e peel off 1 round by guessing a few key bits, now degree 2/

e peel off 2 rounds with advanced techniques: break
» New attack: state recovery using output only

e expansion is just nonlinearly filtered LFSR!

e linearization and meet-in-the-middle techniques

e massive complexities M and N but still a break 0

KRAVATTE as in TOSC 2018
K]J10*

» Target security: still 128 bits

» p; = KECCAK-p[1600, n;| with # rounds 6666 Achouffe
configuration

» Input mask rolling with 320-bit LFSR
» State rolling with 640-bit NLFSR

41

Is KRAVATTE lightweight?

KHuy*»
k @) ¥
et Ao

v

Marginal cost per input or output block:

e fexecution + (N)LFSR update + mask addition
In Farfalle: 6R KECCAK-p plays role similar to 4R AES
Workload per round (in HW or bit-slice SW)

e AES takes 20 operations per bit: 16 XOR and 4 AND

e KECCAK-p takes 4 operations per bit: 3 XOR and 1 AND
Workload per execution (in HW or bit-slice SW)

e 4R AES: 10 ops/byte

e 6R KECCAK-p: 3 ops/byte
Disadvantage of KRAVATTE: 200-byte granularity

vy

v

v

42

by Perrie Nicholas Smith (perriesmith.deviantart.com)

43

Gimli [Bernstein, Kolbl, Lucks, Massolino, Mendel, Nawaz, Schneider, Schwabe, Stan-

daert, Todo, Viguier, CHES 2017]

» ldeal size and shape: 48 bytes in 12 words of 32 bits
e compact on low-end: fits registers of ARM Cortex M3/M4
e fast on high-end: suitable for SIMD
» For low-end platforms: locality of operations to limit swapping

e limits diffusion, see e.g. [Mike Hamburg, 2017]
e no problem for nominal number of rounds: 24
e not clear how many rounds needed in Farfalle

4l

Xoodoo - [noun, mythical] - [zu: du:/ - Alpine
mammal that lives in compact herds, can survive
avalanches and is appreciated for the wide trails it
creates in the landscape. Despite its fluffy appear-
ance it is very robust and does not get distracted by
side channels.

45

XO0ODOO [Keccak team with Seth Hoffert]

ref. code: github.com/XoodooTeam/Xoodoo

Xoopoo cookbook: eprint.iacr.org/2018/767

X00D00 and XOOFFF paper at TOSC 2018/4

» 384-bit permutation KECCAK philosophy ported to Gimli shape

» Main purpose: usage in Farfalle: XOOFFF
e Achouffe configuration
e efficient on wide range of platforms

» X00DOO cookbook also specifies:

e XOOFFF-SANE: session AE relying on user nonce

e XOOFFF-SANSE: session AE using SIV technique

e XOOFFF-WBC: tweakable wide block cipher
XooDYAK: duplex object submitted to NIST lightweight
competition

46

github.com/XoodooTeam/Xoodoo
eprint.iacr.org/2018/767

x X
state plane
z z
w
En
x > X
lane column

» State: 3 horizontal planes each consisting of 4 32-bit lanes

47

Xooboo round function

X

P west P east

0

Iterated: n, rounds that differ only by round constant

48

Nonlinear mapping x

Effect on one plane:

complement
0 -

» X as in KECCAK-p, operating on 3-bit columns
» Involution and same propagation differentially and linearly

49

Mixing layer 6

l column parity T O-effect

PR

» Column parity mixer: compute parity, fold and add to state
» good average diffusion, identity for states in kernel

» heavy inverse

50

Plane shift peast

shift (2,8)

—_—

2

i

1

—_—

0

T\
P\ P shift (0,1) AN
\ ‘\ A
Cwa

we

» After x and before 6
» Shifts planes y = 1and y = 2 over different directions

51

Plane shift pyest

shift (0,11)

—_—

1 % iy R
-

» Shifts planes y = 1and y = 2 over different directions

» After 6 and before x

52

Xo0oD0o pseudocode

n, rounds from i = 1—n, to 0, with a 5-step round function:

0:

Pwest -

Peast -

P Ao +A+A
E— P (1,5) 4+ P < (1,14)
Ay < Ay +Efory e {0,1,2}

A Al < (1,0)
Ay Ay <& (0,11)

Ap,0 <Aoo + C;

Bo A1 A,

By (—E'Ao

By « Ao - A

Ay < Ay + By fory € {0,1,2}

A+ Ak (0,1)
Ay Ay (2,8)

53

XooDoo + Farfalle = XOOFFF

» f=X0o0DOoO[6]
» Input mask rolling with LFSR, state rolling with NLFSR
» Claimed PRF bound (simplified):
N N M
o T T g
with N = # f executions and M = # 48-byte blocks

54

The input mask rolling function in XOOFFF

» State V as a 12-stage feedback shift register V at time t:

Ao Ap An Aszp Vigo Vigs Vigg Vign
Aot A A Asp | = | Vi Vs Vs Vigo
Apo Ao Ao A3 Vi Vs Vige Vigo

v

Lightweight linear recursion:

Vigrn < Vi+ (Ve < 13) 4+ (Vi K 3)

v

Inspired by [Granger, Jovanovic, Mennink & Neves, EC 2016]
Allows computing Vi1, Viars, ..., Veroo in parallel
Invertible, with minimal polynomial that is primitive:

vy

1+X46 —I—ng +X94 +X138 +X142 +X186 +X188 +X190 +X199 +X223
+X238 +X245 _,’_X247 —|-X269 _,’_X27’| +X284 —|-X286 +X295 +X319 +X330

+X334 +X341 +X343 +X352 -|-X365 -|-X367 +X378 +X380 _l_x382 +X384

v

We computed it with Berlekamp-Massey
55

The state rolling function in XOOFFF

» State V as a 12-stage feedback shift register V at time t:

Aoz A A Azp Vieo Vigs Vigg Vi
Aor A A A3 | = Vi Ve Vs Vit
Aoo Ao Ao Aspo Vi Vigs Vige Vi

» Lightweight non-linear recursion:

Vigrz ¢ (Vi & 5) + (Vg1 - Vigo) + (Vg <€ 13) + 00000007

» Allows computing Vii12, Veats, - .-, Viaor in parallel
» Invertible and avoiding fixed points and (some) short cycles
» Main criterion for recursion formula: monomial count

e Dbits of V¢ are functions of Vg, V4, ... Vq
for small t we can reconstruct the algebraic normal form
for large t we can sample the ANF
chosen recursion has high increase of # monomials in t

56

XOOFFF performance

XOOFFF
mask derivation 1985 cycles
less than 48 bytes 5658 cycles
MAC computation use case:
long inputs | 26.0 cycles/byte
Stream encryption use case:
long outputs \ 25.1 cycles/byte

AES-128 counter mode | 1214 cycles/byte

ARM Cortex-M0O

57

XOOFFF performance

XOOFFF
mask derivation 781 cycles
less than 48 bytes 2568 cycles
MAC computation use case:
longinputs | 8.8 cycles/byte
Stream encryption use case:
long outputs \ 8.1 cycles/byte

AES-128 counter mode \ 33.2 cycles/byte

ARM Cortex-M3

57

XOOFFF performance

XOOFFF
mask derivation 168 cycles
less than 48 bytes 504 cycles
MAC computation use case:
longinputs | 0.90 cycles/byte
Stream encryption use case:
long outputs \ 0.94 cycles/byte

AES-128 counter mode \ 0.65 cycles/byte

Intel Core i5-6500 (Skylake), single core, Turbo Boost disabled
(256-bit SIMD)

57

XOOFFF performance

XOOFFF
mask derivation 74 cycles
less than 48 bytes 358 cycles
MAC computation use case:
longinputs | 040 cycles/byte
Stream encryption use case:
long outputs \ 0.51 cycles/byte

AES-128 counter mode \ 0.65 cycles/byte

Intel Core i7-7800X (SkylakeX), single core, Turbo Boost disabled
(512-bit SIMD)

57

How fast does a 1-bit difference spread in Xoop00?

» Dependency Dy: number of bits affected
» Hamming weight W,,: average Hamming weight of difference
» Bitwise entropy Hay: uncertainty about flipping of bits

da ox 5y

stage | Day Way Hav | Dav ~ Way Hav | Dav Way Hav
a_, | 384 191.9 3839 | 384 191.9 3839 | 384 191.9 383.9
b, | 381 187.6 3574 | 384 189.7 376.8 | 384 191.9 3839
a_1 | 293 1765 224.0 | 346 1839 3159 | 384 191.9 383.9

b_1 3 2.0 2.0 6 3.9 4.0 | 279 168.5 220.9
do 1 1.0 0.0 2 2.0 0.0 | 133 133.0 0.0
bo 7 7.0 0.000 2 2.0 0.0 1 1.0 0.0
as 21 14.0 14.0 6 3.9 4.000 3 1.9 2.0
by 102 64.4 75.0 42 28.0 28.0 21 13.9 14.0
ap 210 94.7 187.2 | 105 48.4 87.7 63 28.003 50.7
b, 3717 181.0 366.1 | 293 140.4 268.1 | 207 949 1829
as 384 188.5 382.6 | 357 164.8 343.2 | 321 128.6 2933

bs 384 1919 3839 | 384 1919 383.9 | 384 188.0 381.6 =

Xooboo differential propagation (and correlation)

» Security of Farfalle and sponge limited by max DP(Aq, Ap)
e maxDP(Aq, Ap) by itself hard to determine
» For XooD00: max DP(Aq, Ap) &~ maxg DP(Q) with
e Q atrail of difference patterns: Ag, A7, Ay, ... A; and
e DP(Q): probability that pair with input difference Ag has
difference A; after round j
e Trail weight w(Q) defined by 2-%(®@ = DP(Q)

Bounds on trail weights, using [Mella, Daemen, Van Assche, ToSC 2016]:

rounds: 1T 2 3 4 5 6
differential: 2 8 36 [74,80] >90 >104
linear: 2 8 36 [74,80] >90 > 104

59

Conclusions

» Secure deck functions are very powerful primitives
stream encryption

MAC function

nonce-based (session) AE

SIV-based (session) AE

Wide block encryption

» Deck functions can be built from permutations

e compact: (full-state) keyed duplex
e parallel: farfalle

» Using X00DOO gives very competitive deck function XOOFFF

60

Thanks for your attention!

61

