
Innovations in permutation-based crypto

Joan Daemen¹

based on joint work with Guido Bertoni³, Seth Hoffert, Bart Mennink¹,
Michaël Peeters², Gilles Van Assche² and Ronny Van Keer²
COINS Winter School, 5-10 May 2019, Finse
1Radboud University 2STMicroelectronics 3Security Pattern

1

The simplest possible keyed cryptographic function

input

…

Z← FK(m, ℓ)

2

The ideal cryptographic function

▶ What would the ideal cryptographic function look like?
▶ It is called a Random Oracle (RO) [Bellare-Rogaway 1993]
▶ Random Oracle can be built but is not practical

Random Oracle Inc.: letter answering service!

3

Random Oracle Inc.

1. Letter with (m, ℓ) arrives at Random Oracle Inc.

4

Random Oracle Inc.

2. Manager checks archive for presence of a file (m, Z)

5

Random Oracle Inc.

3a. If no (m, Z) in archive, employee generates random Z with |Z| = ℓ

3b. Else if |Z| < ℓ, employee extends Z to length ℓ with random string

6

Random Oracle Inc.

4. Manager copies Z

7

Random Oracle Inc.

4. Manager puts file with (m, Z) (back) in archive

8

Random Oracle Inc.

5. Manager sends response Z truncated to length ℓ to sender

9

Security notion as a distinguishing game

?

m, l Zm, l Z

F
K

Distinguishing game for an Adversary A:

▶ A faces system S that it can query (m, ℓ) to get Z
▶ but does not know the world it lives in

• in real world S = FK
• in ideal world S = RO

▶ in both worlds, A has the specifications of F
▶ A can make queries and do computations
▶ and should guess the world it is in

10

Security notion: PRF security

?

m, l Zm, l Z

F
K

▶ F is PRF-secure if Pr(success) is 1/2+ ϵ with ϵ negligible
• for any reasonable amount of queries and computation
• we call 2ϵ the (RO distinguishing) advantage Adv

▶ Quantifying effort of adversary A
• online complexity M: sum of data |m|+ ℓ over all queries
• offline complexity N: computational effort (per some unit)

▶ PRF security of F is a bound on Adv as f(M,N)
▶ Implication: for any attack Pr(succ.|F) ≤ f(M,N) + Pr(succ.|RO)

11

What can we do with (PRF) security bounds?

?

m, l Zm, l Z

F
K

▶ We cannot prove a bound for any concrete F
▶ But we can formulate one and use in a security claim for F

• statement on expected security
• made by the designers (or standardization organization)

▶ Claim serves as challenge for cryptanalysts
• break: distinguishing attack with Adv > f(M,N)

▶ Claim serves as security specification for user
• …as long as it is not broken

▶ Assurance grows as years and public scrutiny pile up
12

Back to our cryptographic function F

What can we do with a concrete F?

Say we have:

input

…

with claim, say,

Adv ≤ N
2256 +

M2
2256

for K chosen uniformly from space of 256-bit keys
13

Stream encryption

nonce

plaintext = ciphertext

14

Message authentication (MAC)

plaintext

plaintext

15

Authenticated encryption

nonce

plaintext = ciphertext

plaintext

16

String sequence input and incrementality

packet #1 packet #2 packet #3

packet #1 packet #2 packet #3

FK
(
P(3) ◦ P(2) ◦ P(1)

)

We call this: doubly-extendable cryptographic keyed function

deck function
17

Session authenticated encryption (SAE) [KT, SAC 2011]

K, N1

T(0)

A(1) P(1)

C(1) T(1)

A(2) P(2)

C(2) T(3)

A(3) P(3)

C(3) T(2)

Initialization taking nonce N
T← 0t + FK (N)
history← N
return tag T of length t

Wrap taking metadata A and plaintext P
C← P+ FK (A ◦ history)
T← 0t + FK (C ◦ A ◦ history)
history← C ◦ A ◦ history
return ciphertext C of length |P| and tag T of length t

18

Synthetic initialization value (SIV) of [KT, eprint 2016/1188]

A

P

FK FK

T C

Unwrap taking metadata A, ciphertext C and tag T
P← C+ FK (T ◦ A)
τ ← 0t + FK (P ◦ A)
if τ ̸= T then return error!
else return plaintext P of length |C|

Variant of SIV of [Rogaway & Shrimpton, EC 2006]

19

Wide block cipher (WBC), as in [KT, eprint 2016/1188]

Encipher P with K and tweak W

(L,R) ← split(P)
R0 ← R0 + HK(L ◦ 0)
L ← L + GK (R ◦W ◦ 1)
R ← R + GK (L ◦W ◦ 0)
L0 ← L0 + HK(R ◦ 1)
C ← L || R

return ciphertext C of length |P|

Pʹleft Pʹright

W

HK(... ° 0)

GK(... ° 1)

GK(... ° 0)

HK(... ° 1)

Cleft Cright

Inspired by HHFHFH of [Bernstein, Nandi & Sarkar, Dagstuhl 2016]

20

How to build a deck function?

By icelight (flickr.com)

21

Sponge [Keccak Team, Ecrypt 2008]

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

▶ Uses b-bit permutation, has rate r and capacity c with b = r+ c
▶ Taking K as first part of input gives a deck function (almost)
▶ We can prove Adv < M2

2c+1 +
N
2|K| if f and K are randomly chosen

▶ So sponge construction is sound but f must still be built

22

Intermezzo: how to build a suitable permutation f?

▶ Same as a block cipher (e.g. AES):
• design an efficient round function and repeat that
• resistance to attacks grows (hopefully fast) with # rounds
• determine # rounds that is broken and take some more

▶ Steps of a good round function:
• nonlinear step: combines nearby bits non-linearly
• mixing layer: combines nearby bits linearly
• transposition layer: moves nearby bits far away

▶ Difference with block ciphers
• no key schedule nor round keys but instead round
constants
• no need for efficient inverse

23

For example: Keccak-p[1600,nr]

▶ Bit-oriented round function with high amount of symmetry:
• software with cyclic shift and Boolean instructions only
• fast and compact in hardware

▶ Non-linear step χ: algebraic degree 2
▶ Lightweight round function with heavy inverse

24

Speed up absorbing: sponge→ donkeySponge [KT, DIAC 2012]

25

Incrementality: duplex [Keccak Team, SAC 2011]

0

0

r

c

outer
inner

initialize

pad trunc

f

duplexing

σ0 Z0

pad trunc

f

duplexing

σ1 Z1

pad trunc

f

duplexing

σ2 Z2

…

26

Speed up: duplex→ monkeyDuplex [KT, DIAC 2012]

Very popular:

▶ Adopted by half a dozen CAESAR submissions
▶ including our proposal Ketje [KT, CAESAR 2014]

27

Consolidation: Full-state keyed duplex

±

K
f

iv

Z ¾

f

Z ¾

f

Z ¾

…

[Mennink, Reyhanitabar, & Vizar, Asiacrypt 2015]

[Daemen, Mennink & Van Assche, Asiacrypt 2017]

28

How to build a parallelizable deck function?

by Peter Miller (flick.com)

29

How to build a parallelizable deck function?

by Barilla Food Service

29

Farfalle: early attempt [KT 2014-2016]

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

▶ Reminds of Protected Counter Sums [Bernstein, “stretch”, JOC 1999]
▶ In Protected Counter Sums, f is assumed to be a PRF
▶ We had in mind for f: Keccak-p[1600,nr] with few rounds

30

Problem of early Farfalle: higher-order-differential collisions

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

▶ Differential ∆vf(x) = f(x+ v) + f(x) is kind of derivative of f
▶ The algebraic degree of ∆vf is at most that of f minus one
▶ Derive ∆vf in turn:

∆u∆vf(x) = f(x+ v+ u) + f(x+ u) + f(x+ v) + f(x)
▶ d-th derivative is ∆Vf(x) = ∑v∈V f(x+ v) with V a vector space
▶ Degree of nr-round Keccak-p[1600,nr]: 2nr

▶ if dim(V) = 2nr : ∆Vf(x) is a constant

31

Problem of early Farfalle: higher-order-differential collisions
(cont’d)

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

Collision-generating attack:

▶ Choose a message m of 2nr blocks mi that form a vector space
▶ Encodings of block numbers also form a vector space
▶ Inputs to f also form a vector space
▶ Accumulator is a constant independent of m or k
▶ n-fold multicollision with online cost M = n22nr input blocks
▶ With carefully chosen blocks mi this reduces to M = n22nr−1

▶ Practical up to nr = 6: each such message is only 0.5 Terabyte
32

Higher-order-differential collisions: attempts at mitigation

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

Fancy encoding enc(i) of block numbers

▶ To fully prevent high-dimensional affine spaces at f input
▶ We tried many things …
▶ Nicest one: enc(i) = xi mod p(x)∥x−i mod p(x)

• with p(x) an primitive polynomial
• computing enc(i+ 1) from enc(i) takes two LFSR updates
• No affine spaces exist with dimension > 2 for same reason
that AES S-box has differential uniformity 4

33

Higher-order-differential collisions: chosen mitigation

▶ Not to prevent affine spaces but just to make them hard to find
▶ Computing of f-input for block i: mi + (xik) mod p(x)
▶ We call this input mask rolling

• k is full-width secret mask derived from user key K
• If p(x) not sparse, choosing mi to form exploitable affine
space at input to f is infeasible

▶ Additional benefit: increases rate of blocks mi to full-width

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

34

Farfalle: the final construction (modulo some details)

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

▶ Derivation of mask k from user key K using pb
▶ Input mask rolling and pc to prevent higher-order-differentials
▶ State rolling, pe and mask against state retrieval at output
▶ Middle pd against accumulator-affine-space attack
▶ Input-output attacks have to deal with pe ◦ pd ◦ pc

35

Farfalle: accumulator-affine-space attack

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

▶ Apply 22 2-block messages: m0∥m1,m′0∥m1,m0∥m′1,m′0∥m′1
▶ Let ai = pc(mi + ki) and a′i = pc(m′i + ki)
▶ Affine space in accumulator: a0 + a1,a′0 + a1,a0 + a′1,a′0 + a′1
▶ Generalizes to dim. d taking 2d messages of each d blocks
▶ Can distinguish construction if pe ◦ pd has too low degree
▶ This is what forced us to add pd

36

Farfalle now [Keccak Team + Seth Hoffert, ToSC 2018]

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

▶ LFSR input mask rolling and pc against accumulator collisions
▶ Middle pd against accumulator-affine-space attack
▶ NLFSR state rolling, pe and mask against state retrieval at output
▶ Input-output attacks have to deal with pe ◦ pd ◦ pc

37

Multi-string input and incrementality

pc

0 c k

pc

1 c k

pc

2 c k

3 c kblank index

pc

4 c k

pc

5 c k

6 c kblank index

K∥10∗ pb

k′ …7 c

a0

a1

a2

b0

b1

A

10∗

B

10∗

…

38

Kravatte as in IACR eprint July 2017

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

▶ pi = Keccak-p[1600,nr] with # rounds in pb,pc,pd,pe: 6644
▶ Input mask and state rolling with LFSR over 320 of 1600 bits
▶ With claim targeting 128-bit security

39

Kravatte IACR eprint July 2017 under pressure

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

▶ October 2017: attacks by Colin Chaigneau, Thomas Fuhr, Henri
Gilbert, Jian Guo, Jérémy Jean, Jean-René Reinhard and Ling Song

▶ Extension of accumulator-affine-space attack
• degree of pe ◦ pd is 28, so infeasible?
• peel off 1 round by guessing a few key bits, now degree 27
• peel off 2 rounds with advanced techniques: break

▶ New attack: state recovery using output only
• expansion is just nonlinearly filtered LFSR!
• linearization and meet-in-the-middle techniques
• massive complexities M and N but still a break 40

Kravatte as in TOSC 2018

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

▶ Target security: still 128 bits
▶ pi = Keccak-p[1600,nr] with # rounds 6666 Achouffe
configuration

▶ Input mask rolling with 320-bit LFSR
▶ State rolling with 640-bit NLFSR

41

Is Kravatte lightweight?

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

▶ Marginal cost per input or output block:
• f execution + (N)LFSR update + mask addition

▶ In Farfalle: 6R Keccak-p plays role similar to 4R AES
▶ Workload per round (in HW or bit-slice SW)

• AES takes 20 operations per bit: 16 XOR and 4 AND
• Keccak-p takes 4 operations per bit: 3 XOR and 1 AND

▶ Workload per execution (in HW or bit-slice SW)
• 4R AES: 10 ops/byte
• 6R Keccak-p: 3 ops/byte

▶ Disadvantage of Kravatte: 200-byte granularity 42

by Perrie Nicholas Smith (perriesmith.deviantart.com)

43

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider, Schwabe, Stan-
daert, Todo, Viguier, CHES 2017]

▶ Ideal size and shape: 48 bytes in 12 words of 32 bits
• compact on low-end: fits registers of ARM Cortex M3/M4
• fast on high-end: suitable for SIMD

▶ For low-end platforms: locality of operations to limit swapping
• limits diffusion, see e.g. [Mike Hamburg, 2017]
• no problem for nominal number of rounds: 24
• not clear how many rounds needed in Farfalle

44

Xoodoo · [noun, mythical] · /zu: du:/ · Alpine
mammal that lives in compact herds, can survive
avalanches and is appreciated for the wide trails it
creates in the landscape. Despite its Ěuěy appear-
ance it is very robust and does not get distracted by
side channels.

45

Xoodoo [Keccak team with Seth Hoffert]

ref. code: github.com/XoodooTeam/Xoodoo

Xoodoo cookbook: eprint.iacr.org/2018/767

Xoodoo and Xoofff paper at TOSC 2018/4

▶ 384-bit permutation Keccak philosophy ported to Gimli shape

▶ Main purpose: usage in Farfalle: Xoofff
• Achouffe configuration
• efficient on wide range of platforms

▶ Xoodoo cookbook also specifies:
• Xoofff-SANE: session AE relying on user nonce
• Xoofff-SANSE: session AE using SIV technique
• Xoofff-WBC: tweakable wide block cipher
• Xoodyak: duplex object submitted to NIST lightweight
competition

46

github.com/XoodooTeam/Xoodoo
eprint.iacr.org/2018/767

Xoodoo state

x

y

z

state
x

y

z

plane

x

y

z

lane
x

y

z

column

▶ State: 3 horizontal planes each consisting of 4 32-bit lanes

47

Xoodoo round function

θ

ρwest

χ

ρeast

Iterated: nr rounds that differ only by round constant

48

Nonlinear mapping χ

Effect on one plane:

0

1

2

complement

▶ χ as in Keccak-p, operating on 3-bit columns
▶ Involution and same propagation differentially and linearly

49

Mixing layer θ

+ =

column parity θ-effect

fold

▶ Column parity mixer: compute parity, fold and add to state
▶ good average diffusion, identity for states in kernel
▶ heavy inverse

50

Plane shift ρeast

0

1

2
shift (2,8)

shift (0,1)

▶ After χ and before θ

▶ Shifts planes y = 1 and y = 2 over different directions

51

Plane shift ρwest

0

1

2
shift (0,11)

shift (1,0)

▶ After θ and before χ

▶ Shifts planes y = 1 and y = 2 over different directions

52

Xoodoo pseudocode
nr rounds from i = 1− nr to 0, with a 5-step round function:

θ :
P← A0 + A1 + A2
E← P≪ (1, 5) + P≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0,0 ← A0,0 + Ci

χ :
B0 ← A1 · A2
B1 ← A2 · A0
B2 ← A0 · A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

53

Xoodoo + Farfalle = Xoofff

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

▶ f = Xoodoo[6]
▶ Input mask rolling with LFSR, state rolling with NLFSR
▶ Claimed PRF bound (simplified):

N
2|K|

+
N
2192 +

M
2128

with N = # f executions and M = # 48-byte blocks

54

The input mask rolling function in Xoofff

▶ State V as a 12-stage feedback shift register V at time t: A0,2 A1,2 A2,2 A3,2
A0,1 A1,1 A2,1 A3,1
A0,0 A1,0 A2,0 A3,0

 =

 Vt+2 Vt+5 Vt+8 Vt+11
Vt+1 Vt+4 Vt+7 Vt+10
Vt Vt+3 Vt+6 Vt+9


▶ Lightweight linear recursion:

Vt+12 ← Vt + (Vt ≪ 13) + (Vt+1 ≪ 3)

▶ Inspired by [Granger, Jovanovic, Mennink & Neves, EC 2016]
▶ Allows computing Vt+12, Vt+13, . . . , Vt+22 in parallel
▶ Invertible, with minimal polynomial that is primitive:

1+ x46 + x92 + x94 + x138 + x142 + x186 + x188 + x190 + x199 + x223

+x238 + x245 + x247 + x269 + x271 + x284 + x286 + x295 + x319 + x330

+x334 + x341 + x343 + x352 + x365 + x367 + x378 + x380 + x382 + x384

▶ We computed it with Berlekamp-Massey
55

The state rolling function in Xoofff

▶ State V as a 12-stage feedback shift register V at time t: A0,2 A1,2 A2,2 A3,2
A0,1 A1,1 A2,1 A3,1
A0,0 A1,0 A2,0 A3,0

 =

 Vt+2 Vt+5 Vt+8 Vt+11
Vt+1 Vt+4 Vt+7 Vt+10
Vt Vt+3 Vt+6 Vt+9


▶ Lightweight non-linear recursion:

Vt+12 ← (Vt ≪ 5) + (Vt+1 · Vt+2) + (Vt+1 ≪ 13) + 00000007

▶ Allows computing Vt+12, Vt+13, . . . , Vt+21 in parallel
▶ Invertible and avoiding fixed points and (some) short cycles
▶ Main criterion for recursion formula: monomial count

• bits of Vt are functions of V0, V1, . . . V11
• for small t we can reconstruct the algebraic normal form
• for large t we can sample the ANF
• chosen recursion has high increase of # monomials in t

56

Xoofff performance

Xoofff
mask derivation 1985 cycles

less than 48 bytes 5658 cycles
MAC computation use case:

long inputs 26.0 cycles/byte
Stream encryption use case:

long outputs 25.1 cycles/byte
AES-128 counter mode 121.4 cycles/byte

ARM Cortex-M0

57

Xoofff performance

Xoofff
mask derivation 781 cycles

less than 48 bytes 2568 cycles
MAC computation use case:

long inputs 8.8 cycles/byte
Stream encryption use case:

long outputs 8.1 cycles/byte
AES-128 counter mode 33.2 cycles/byte

ARM Cortex-M3

57

Xoofff performance

Xoofff
mask derivation 168 cycles

less than 48 bytes 504 cycles
MAC computation use case:

long inputs 0.90 cycles/byte
Stream encryption use case:

long outputs 0.94 cycles/byte
AES-128 counter mode 0.65 cycles/byte

Intel Core i5-6500 (Skylake), single core, Turbo Boost disabled
(256-bit SIMD)

57

Xoofff performance

Xoofff
mask derivation 74 cycles

less than 48 bytes 358 cycles
MAC computation use case:

long inputs 0.40 cycles/byte
Stream encryption use case:

long outputs 0.51 cycles/byte
AES-128 counter mode 0.65 cycles/byte

Intel Core i7-7800X (SkylakeX), single core, Turbo Boost disabled
(512-bit SIMD)

57

How fast does a 1-bit difference spread in Xoodoo?

▶ Dependency Dav: number of bits affected
▶ Hamming weight wav: average Hamming weight of difference
▶ Bitwise entropy Hav: uncertainty about flipping of bits

δa δK δb
stage Dav wav Hav Dav wav Hav Dav wav Hav
a−2 384 191.9 383.9 384 191.9 383.9 384 191.9 383.9
b−2 381 187.6 357.4 384 189.7 376.8 384 191.9 383.9
a−1 293 176.5 224.0 346 183.9 315.9 384 191.9 383.9
b−1 3 2.0 2.0 6 3.9 4.0 279 168.5 220.9
a0 1 1.0 0.0 2 2.0 0.0 133 133.0 0.0
b0 7 7.0 0.000 2 2.0 0.0 1 1.0 0.0
a1 21 14.0 14.0 6 3.9 4.000 3 1.9 2.0
b1 102 64.4 75.0 42 28.0 28.0 21 13.9 14.0
a2 210 94.7 187.2 105 48.4 87.7 63 28.003 50.7
b2 371 181.0 366.1 293 140.4 268.1 207 94.9 182.9
a3 384 188.5 382.6 357 164.8 343.2 321 128.6 293.3
b3 384 191.9 383.9 384 191.9 383.9 384 188.0 381.6 58

Xoodoo differential propagation (and correlation)

▶ Security of Farfalle and sponge limited by maxDP(∆a,∆b)

• maxDP(∆a,∆b) by itself hard to determine
▶ For Xoodoo: maxDP(∆a,∆b) ≈ maxQ DP(Q) with

• Q a trail of difference patterns: ∆0,∆1,∆2, . . . ∆r and
• DP(Q): probability that pair with input difference ∆0 has
difference ∆j after round j
• Trail weight w(Q) defined by 2−w(Q) = DP(Q)

Bounds on trail weights, using [Mella, Daemen, Van Assche, ToSC 2016]:

rounds: 1 2 3 4 5 6
differential: 2 8 36 [74, 80] ≥ 90 ≥ 104
linear: 2 8 36 [74, 80] ≥ 90 ≥ 104

59

Conclusions

▶ Secure deck functions are very powerful primitives
• stream encryption
• MAC function
• nonce-based (session) AE
• SIV-based (session) AE
• Wide block encryption

▶ Deck functions can be built from permutations
• compact: (full-state) keyed duplex
• parallel: farfalle

▶ Using Xoodoo gives very competitive deck function Xoofff

60

Thanks for your attention!

θ

ρwest

χ

ρeast

61

