Niho bent functions and o-equivalence

Diana Davidova
University of Bergen

join work with
Lilya Budaghyan Claude Carlet Tor Helleseth
Ferdinand Ihringer Tim Penttila

5-10 May 2019
COINS Winter School
Finse, Norway
Introduction

Group of 24 transformations acting on o-polynomials;
Only 4 of them can lead to EA-inequivalent Niho bent functions.
Notation and preliminaries

- **Trace function**
 A mapping $Tr_r^k : \mathbb{F}_{2^k} \mapsto \mathbb{F}_{2^r}$, defined in the following way:

 $$Tr_r^k(x) = \sum_{i=0}^{k-1} x^{2^{ir}} = x + x^{2^r} + x^{2^{2r}} + \ldots + x^{2^{k-r}},$$

 for any $k, r \in \mathbb{Z}^+$, such that k is dividing by r.

 For $r = 1$, Tr_r^k is called the absolute trace:

 $$Tr_r^k(x) = Tr_k(x) = \sum_{i=0}^{k-1} x^{2^i}.$$
Boolean function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$.

- **Univariant representation**
 Identify \mathbb{F}_2^n with \mathbb{F}_{2^n}. There exists the unique representation of f:

 $$f(x) = \sum_{i=0}^{2^n-1} a_i x^i.$$

 The degree of Boolean function is the maximum $w_2(i)$ of the exponents in its univariant representation. **affine**, if the degree ≤ 1.
Bivariant representation (for even n):
\[\mathbb{F}_2^n \] can be identified with \(\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}(n = 2m) \) and the argument of f is considered as an ordered pair $\langle x, y \rangle$, $x, y \in \mathbb{F}_{2^m}$. Then there is the unique representation of f over \mathbb{F}_{2^m}:

\[
f(z) = \sum_{0 \leq i,j \leq 2^m-1} a_{i,j} x^i y^j.
\]

The algebraic degree of f is \(\max_{i,j} |a_{i,j}| \neq 0 \left((w_2(i) + w_2(j)) \right) \).

Bivariant representation of f in trace form:

\[
f(x, y) = Tr_m(P(x, y)),
\]

where $P(x, y)$ is some polynomial of 2 variables over \mathbb{F}_{2^m}.
Bent functions

- **Walsh transformation**
 is a Fourier transformation of $\chi_f = (-1)^f$, whose value is defined by:

 $$\hat{\chi}_f(a) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \text{Tr}_n(ax)},$$

 at point $a \in \mathbb{F}_{2^n}$.

- **The Hamming distance**
 $f, g : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2$, $d_H(f, g) = |\{x \in \mathbb{F}_{2^n} | f(x) \neq g(x)\}|$.

- **Nonlinearity**
 $\mathcal{N}\mathcal{L}(f) = \min_{l \in A_n} d_H(f, l)$, where
 $A_n = \{l : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2 | l = a \cdot x + b, a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_2\}$.
 High nonlinearity prevents the system from linear attacks and differential attacks.
\[\mathcal{NL}(f) = 2^{n-1} - \frac{1}{2} \max_{a \in F_2^n} \hat{\chi}_f(a). \]

\[\mathcal{NL}(f) \leq 2^{n-1} - 2^{\frac{n}{2} - 1}. \]

The \(\mathcal{NL}(f) \) reach the upper bound only for even \(n \).

- **Bent function**

 \(f : F_{2^n} \leftrightarrow F_2 \) (\(n \) is even), if

 \[\mathcal{NL}(f) = 2^{n-1} - 2^{\frac{n}{2} - 1}, \]

 equivalently

 \[\hat{\chi}_f(a) = \pm 2^{\frac{n}{2}} \]

 for any \(a \in F_{2^n} \).
Niho Bent Functions

- A positive integer \(d \) (understood modulo \(2^n - 1 \) with \(n = 2m \)) is a **Niho exponent** and \(t \mapsto t^d \), is a **Niho power function**, if the restriction of \(t^d \) to \(\mathbb{F}_{2^m} \) is linear, i.e. \(d \equiv 2^j (mod \ 2^m - 1) \) for some \(j < n \).

Example

Niho bent functions

1. Quadratic functions \(Tr_m(at^{2^m+1}), a \in \mathbb{F}_{2^m} \setminus \{0\} \);
2. Binomilas of the form \(f(t) = Tr_n(\alpha_1 t_1^{d_1} + \alpha_2 t_2^{d_2}) \), where \(\alpha_1, \alpha_2 \in \mathbb{F}_{2^n} \), \(d_1 = (2^m - 1)\frac{1}{2} + 1 \), and \(d_2 \) can be:
 - \(2^m - 1 \)\(\frac{3}{4} + 1 \) (\(m \) is odd), \(2^m - 1 \)\(\frac{1}{6} + 1 \) (\(m \) is even).
3. For \(r > 1 \) with \(gcd(r, m) = 1 \)
 \[f(x) = Tr_n\left(a^2 t^{2^m+1} + (a + a^{2^m}) \sum_{i=1}^{2^{r-1}-1} t^{d_i}\right), \]
 where \(2^r d_i = (2^m - 1)i + 2^r \), \(a \in \mathbb{F}_{2^n} \) s.t. \(a + a^{2^m} \neq 0 \).

The functions in this class are defined in their bivariant form:

\[f(x, y) = Tr_m(y + xF(yx^{2^m-2})) , \]

where \(x, y \in \mathbb{F}_{2^m} \),

- \(F \) is a permutation of \(\mathbb{F}_{2^m} \) s.t. \(F(x) + x \) doesn’t vanish

- for any \(\beta \in \mathbb{F}_{2^m} \setminus \{0\} \) the function \(F(x) + \beta x \) is 2-to-1.
Class \mathcal{H} of bent functions

This class H was modified into a class \mathcal{H} of the functions:

$$g(x, y) = \begin{cases} \text{Tr}_m\left(xG\left(\frac{y}{x} \right) \right), & \text{if } x \neq 0; \\ \text{Tr}_m(\mu y), & \text{if } x = 0, \end{cases}$$

where $\mu \in \mathbb{F}_{2^m}$, $G : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^m}$ satisfying the following conditions:

1. $F : z \mapsto G(z) + \mu z$ is a permutation over \mathbb{F}_{2^m}
2. $z \mapsto F(z) + \beta z$ is 2-to-1 on \mathbb{F}_{2^m} for any $\beta \in \mathbb{F}_{2^m} \setminus \{0\}$.

Condition (2) implies condition (1) and it necessary and sufficient for g being bent.

Functions in \mathcal{H} and the Dillon class are the same up to addition a linear term $\text{Tr}_m((\mu + 1)y)$.

Niho bent functions are functions in \mathcal{H} in the univariate representation.
A polynomial $F : \mathbb{F}_{2^m} \rightarrow \mathbb{F}_{2^m}$ is called an $o-$polynomial, if

1. F is a permutational polynomial satisfies $F(0) = 0, F(1) = 1$;

2. the function $F_s(x) = \begin{cases} 0, & \text{if } x = 0, \\
\frac{F(x+s)+F(s)}{x} & \text{if } x \neq 0
\end{cases}
$ is a permutation for each $s \in \mathbb{F}_{2^m}$.

If we do not require $F(1) = 1$, then F is called $o-$permutation.

Theorem

A polynomial F defined on \mathbb{F}_{2^m} is an $o-$polynomial if and only if

$$z \mapsto F(z) + \beta z$$

is 2-to-1 on \mathbb{F}_{2^m} for any $\beta \in \mathbb{F}_{2^m} \setminus \{0\}$.

Every o-polynomial defines a Niho bent function and vice versa.
The list of known o-polynomials on \(\mathbb{F}_{2^m} \):

1. \(F(z) = z^{2^i}, \gcd(i, m) = 1 \),
2. \(F(z) = z^6, \ m \) is odd,
3. \(F(z) = z^{3 \cdot 2^k + 4}, \ m = 2k - 1 \),
4. \(F(z) = z^{2^k + 2^k}, \ m = 4k - 1 \),
5. \(F(z) = z^{2^{2k+1} + 2^{3k+1}}, \ m = 4k + 1 \),
6. \(F(z) = z^{2^k} + z^{2^k + 2} + z^{3 \cdot 2^k + 4}, \ m = 2k - 1 \),
7. \(F(z) = z^{\frac{1}{6}} + z^{\frac{1}{2}} + z^{\frac{5}{6}}, \ m \) is odd.
8. \(F(z) = \frac{\delta^2(z^4 + z) + \delta^2(1 + \delta + \delta^2)(z^3 + z^2)}{z^4 + \delta^2 z^2 + 1} + z^{\frac{1}{2}}, \) where \(Tr_m(\frac{1}{\delta}) = 1 \) (if \(m \equiv 2 \) mod 4, then \(\delta \not\in F_4 \)),
9. \(F(z) = \frac{1}{Tr_m^n(v)} \left(Tr_m^n(v^r)(z + 1) + (z + Tr_m^n(v)z^{\frac{1}{2}} + 1)^{1-r} Tr_m^n(vz + v^{2^m}r) \right) + z^{\frac{1}{2}}, \)
 where \(m \) is even, \(r = \pm \frac{2^m - 1}{3} \), \(v \in F_{2^m} \), \(v^{2^m + 1} \neq 1 \), \(v \neq 1 \)
Projective plane

Let P be a set, which elements are called points, $L \subseteq 2^P$ called lines and $I \subseteq P \times L$ is a relation called relation of incidence. Projective plane Π is a triple $(P, L; I)$ satisfies the following conditions:

1. any pair of distinct points are incident with exactly one line;
2. any pair of distinct lines is incident exactly with one point;
3. there exists four points no three of which are incident with the same line.

For any projective plane Π there exists an integer $q \geq 2$ such that

- Any point (line) of projective plane Π is incident exactly with $q + 1$ lines (points).
- A projective plane Π has exactly $q^2 + q + 1$ points (lines).

q is called the dimension of projective plane and Π is denoted by $PG(2, q)$.
For any \(q = p^n\) (\(p\) is a prime number) there exists a projective plane. Points which are incident with the same line are called \textbf{collinear}.

\textbf{A hyperoval} of the projective plane \(PG(2, 2^m)\) is a set of \(2^m + 2\) points no three of which are collinear.

There is a one-to-one correspondence between \(o\)–polynomials and \textit{hyperovals}.

Any hyperoval \(\mathcal{H}\) can be represented in the form:

\[
\{(x, f(x), 1) | x \in F_{2^m}\} \cup \{(1, 0, 0), (0, 1, 0)\},
\]

where \(f\) is an \(o\)–polynomial.

And conversly, for any \(o\)–polynomial \(f\) the set

\[
\{(x, f(x), 1) | x \in F_{2^m}\} \cup \{(1, 0, 0), (0, 1, 0)\}
\]

defines a hyperoval.
hyperovals are called **equivalent** if they are mapped to each other by a collineation (Collination is an authomorphism of projective plane which preserve incidentness.).

o-polynomials are **projectively equivalent**, if they define equivalent hyperovals.

Niho bent functions are **o-equivalent** if they define projectively equivalent o-polynomials.

Boolean functions f and g are called **EA-equivalent**, if there exist an affine authomorphism A and an affine Boolean function l s.t. $f = g \circ A + l$.

o-equivalent Niho bent fuctions defined by o-polynomials F and F^{-1} can be EA-inequivalent.
Modified magic action

Consider an action of a group $\mathrm{PGL}(2, 2^m) = \{ x \mapsto Ax^{2j} | A \in \mathrm{GL}(2, \mathbb{F}_{2^m}), 1 \leq j \leq m - 1 \}$ on the set of all o-polynomials, which can be described by a collection of generators $G = \{ \tilde{\sigma}_a, \tilde{\tau}_c, \rho_{2j}, \varphi | a \in \mathbb{F}_{2^m} \setminus \{0\}, c \in \mathbb{F}_{2^m}, 0 \leq j \leq m - 1 \}$:

\[
\tilde{\sigma}_a F(x) = \frac{1}{F(a)} F(ax), \ a \in \mathbb{F}_{2^m} \setminus \{0\};
\]
\[
\tilde{\tau}_c F(x) = \frac{1}{F(1 + c) + F(c)} (F(x + c) + F(c)), \ c \in \mathbb{F}_{2^m},
\]
\[
\varphi F(x) = x F(x^{-1});
\]
\[
\rho_{2j} F(x) = (F(x^{2^j}))^{2^{-j}}, \ 0 \leq j \leq m - 1.
\]
Proposition

Two o-polynomials arise from equivalent hyperovals if and only if they lie on the same orbit under the modified magic action and the inverse map.

- Two o-polynomials are projectively equivalent if and only if the corresponding hyperovals lie on the same orbit under the modified magic action and the inverse map.
- Niho bent functions are o-equivalent iff the corresponding hyperovals lie on the same orbit under the modified magic action and the inverse map.
Theorem

For a given o-polynomial F, EA-inequivalent Niho bent functions can potentially arise from o-polynomials which lie on orbits of the modified magic action and the inverse map of the following form

\[(H_1(H_2(H_3(\ldots(H_qF)^{-1}\ldots)^{-1})^{-1})^{-1})^{-1},\]

where $H_i = \varphi \circ \tilde{\tau}_{c_{i_1}} \circ \varphi \circ \tilde{\tau}_{c_{i_2}} \circ \ldots$ where $i \in \{1, \ldots q\}$.
• F is an o-monomial, then EA-inequivalent Niho bent functions can potentially arise from o-polynomials on the following 4 orbits

$$F, F^{-1}, (\varphi F)^{-1}, (\varphi \circ \tilde{\tau}_1 F)^{-1}.$$

$$(\varphi F)^{-1}(x) = (xF(\frac{1}{x}))^{-1},$$

$$F_1^o = (\varphi \circ \tilde{\tau}_1 F)^{-1} = \left(x(F((\frac{1}{x} + 1) + 1)) \right)^{-1}.$$
$F(x) = x_6^1 + x_2^1 + x_6^5$, then EA-inequivalent Niho bent functions can potentially arise from o-polynomials on the following orbits

$$F, (\varphi \circ \tilde{c}_F)^{-1}, c \in F_2^m.$$

$$F_c^o(x) = (\varphi \circ \tilde{c}_F)^{-1}(x) = \left(\frac{1}{F(1+c)+F(c)} x(F(\frac{1}{x} + c) + F(c)) \right)^{-1},$$

c $\in F_2^m$.

Example

$F(x) = x_6^1 + x_2^1 + x_6^5$, then o-polynomials $F, F_0^o = F^{-1}, F_\alpha^o, F_\alpha^3, F_\alpha^5$, where α is a primitive element of F_{2^5}.