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Embedded microcontrollers

“A microcontroller (or MCU for microcontroller unit) is a small computer
on a single integrated circuit. In modern terminology, it is a system on a
chip or SoC.” —Wikipedia
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Cryptography

Symmetric crypto

◮ Block ciphers (AES, DES, Present, . . . )

◮ Stream ciphers (Salsa20, ChaCha20, . . . )

◮ Hash functions (SHA2, SHA3, . . . )

◮ Authenticators (HMAC, GHASH, Poly1305, . . . )
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Optimizing

◮ Optimize software on the assembly level
◮ Crypto is worth the effort for better performance
◮ Also, no compiler to introduce, e.g. side-channel leaks
◮ It’s fun
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Optimizing

◮ Optimize software on the assembly level
◮ Crypto is worth the effort for better performance
◮ Also, no compiler to introduce, e.g. side-channel leaks
◮ It’s fun

◮ Different from optimizing on “large” processors:
◮ Size matters! (RAM and ROM)
◮ Less parallelism (no vector units, not superscalar)
◮ Often critical: reduce number of loads/stores
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Our Target platform

◮ ARM Cortex-M4 on STM32F4-Discovery board

◮ 192KB RAM, 1MB Flash (ROM)

◮ Available for <20 Euros from various vendors (e.g., Amazon, RS
Components, Conrad)

◮ Additionally need USB-TTL converter and mini-USB cable
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Cortex-M4 basics

◮ 16 registers, r0 to r15

◮ 32 bits wide

◮ Not all can be used freely
◮ r13 is sp, stack pointer
◮ r14 is lr, link register
◮ r15 is pc, program counter

◮ Some status registers for, e.g., flags (carry, zero, . . . )
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◮ 16 registers, r0 to r15

◮ 32 bits wide

◮ Not all can be used freely
◮ r13 is sp, stack pointer
◮ r14 is lr, link register
◮ r15 is pc, program counter

◮ Some status registers for, e.g., flags (carry, zero, . . . )

◮ Instr Rd, Rn, Rn, e.g.:
◮ add r2, r0, r1 (three operands)
◮ mov r1, r0 (two operands)

Details on instructions: ARMv7-M Architecture Reference Manual
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/

readings/ARMv7-M_ARM.pdf

Instruction summary and timings: Cortex-M4 Technical Reference
Manual http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
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A first simple example

uint32_t accumulate(uint32_t *array, size_t arraylen) {

size_t i;

uint32_t r=0;

for(i=0;i<arraylen;i++) {

r += array[i];

}

return r;

}

int main(void)

{

uint32_t array[1000], sum;

init(array, 1000);

sum = accumulate(array, 1000);

printf("sum: %d\n", sum);

return sum;

}
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accumulate in assembly

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function

accumulate:

mov r2, #0

loop:

cmp r1, #0

beq done

ldr r3,[r0]

add r2,r3

add r0,#4

sub r1,#1

b loop

done:

mov r0,r2

bx lr
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How fast is it?

◮ Arithmetic instructions cost 1 cycle

◮ (Single) loads cost 2 cycles

◮ Branches cost at least 2 cycles
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How fast is it?

◮ Arithmetic instructions cost 1 cycle

◮ (Single) loads cost 2 cycles

◮ Branches cost at least 2 cycles

◮ The loop body should cost 10 cycles

Benchmarking

◮ Read from DWT_CYCCNT

◮ Execute function

◮ Read from DWT_CYCCNT, compare

◮ Needs some setup; see example code (later)
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Speeding it up, part I

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function

accumulate:

mov r2, #0

loop:

subs r1,#1

bmi done

ldr r3,[r0],#4

add r2,r3

b loop

done:

mov r0,r2

bx lr
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What did we do?

◮ Merge cmp and sub

◮ Need subs to set flags

◮ Have ldr auto-increase r0

◮ Total saving should be 2 cycles

◮ Also, code is (marginally) smaller
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Speeding it up, part II

accumulate:

push {r4-r12}

mov r2, #0

loop1:

subs r1,#8

bmi done1

ldm r0!,{r3-r10}

add r2,r3

...

add r2,r10

b loop1

done1:

add r1,#8

loop2:

subs r1,#1

bmi done2

ldr r3,[r0],#4

add r2,r3

b loop2

done2:

pop {r4-r12}

mov r0,r2

bx lr

12



What did we do?

◮ Use ldm (“load multiple”) instruction

◮ Loading N items costs only N + 1 cycles

◮ Need more registers; need to push “caller registers” to the stack
(push)

◮ Restore caller registers at the end of the function (pop)
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What did we do?

◮ Use ldm (“load multiple”) instruction

◮ Loading N items costs only N + 1 cycles

◮ Need more registers; need to push “caller registers” to the stack
(push)

◮ Restore caller registers at the end of the function (pop)

◮ Partially unroll to reduce loop-control overhead

◮ Makes code somewhat larger, various tradeoffs possible

◮ Lower limit is slightly above 2000 cycles

◮ Ideas for further speedups?
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Optimizing “something” vs. optimizing crypto

◮ So far there was nothing crypto-specific in this lecture

◮ Is optimizing crypto the same as optimizing any other software?
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Optimizing “something” vs. optimizing crypto

◮ So far there was nothing crypto-specific in this lecture

◮ Is optimizing crypto the same as optimizing any other software?

◮ No. Cryptographic software deals with secret data (e.g., keys)

◮ Information about secret data must not leak through side channels

◮ For today, only consider timing side-channel:
◮ Only side-channel that can be exploited remotely
◮ Can eliminate systematically through “constant-time” code
◮ Generic techniques to write constant-time code
◮ Performance penalty highly algorithm-dependent
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Timing leakage part I

◮ Consider the following piece of code:

if s then
r←A

else
r←B

end if
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Timing leakage part I

◮ Consider the following piece of code:

if s then
r←A

else
r←B

end if

◮ General structure of any conditional branch

◮ A and B can be large computations, r can be a large state

◮ This code takes different amount of time, depending on s

◮ Obvious timing leak if s is secret

◮ Even if A and B take the same amount of cycles this is generally
not constant time!

◮ Reasons: Branch prediction, instruction-caches

◮ Never use secret-data-dependent branch conditions
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Eliminating branches

◮ So, what do we do with this piece of code?

if s then
r←A

else
r←B

end if
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addition, AND instead of multiplication
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Eliminating branches

◮ So, what do we do with this piece of code?

if s then
r←A

else
r←B

end if

◮ Replace by
r←sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster
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Cached memory access

M
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◮ Memory access goes through a
cache

◮ Small but fast transparent
memory for frequently used
data
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ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

◮ Memory access goes through a
cache

◮ Small but fast transparent
memory for frequently used
data

◮ A load from memory places
data also in the cache

◮ Data remains in cache until it’s
replaced by other data

◮ Loading data is fast if data is in
the cache (cache hit)

◮ Loading data is slow if data is
not in the cache (cache miss)
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

T [32] . . . T [47]

T [48] . . . T [63]

T [64] . . . T [79]

T [80] . . . T [95]

T [96] . . . T [111]

T [112] . . . T [127]

T [128] . . . T [143]

T [144] . . . T [159]

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

T [224] . . . T [239]

T [240] . . . T [255]

◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache
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◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ Crypto continues, loads from table
again

◮ Attacker loads his data:
◮ Fast: cache hit (crypto did not just

load from this line)
◮ Slow: cache miss (crypto just loaded

from this line)
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Some comments on cache-timing

◮ This is only the most basic cache-timing attack
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Some comments on cache-timing

◮ This is only the most basic cache-timing attack

◮ Non-secret cache lines are not enough for security

◮ Load/Store addresses influence timing in many different ways

◮ Do not access memory at secret-data-dependent addresses

◮ Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

◮ Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation
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Eliminating lookups

◮ Want to load item at (secret) position p from table of size n
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Eliminating lookups

◮ Want to load item at (secret) position p from table of size n

◮ Load all items, use arithmetic to pick the right one:

for i from 0 to n− 1 do
d←T [i]
if p = i then

r←d

end if
end for

◮ Problem 1: if-statements are not constant time (see before)

◮ Problem 2: Comparisons are not constant time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)

{

unsigned long long t = a ^ b;

t = (-t) >> 63;

return 1-t;

}

20



Is that all? (Timing leakage part III)

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm
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Is that all? (Timing leakage part III)

Lesson so far

◮ Avoid all data flow from secrets to branch conditions and memory
addresses

◮ This can always be done; cost highly depends on the algorithm

◮ On supported platforms, test this with valgrind and uninitialized
secret data (or use Langley’s ctgrind)

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013
21



Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs

◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )

◮ MUL, MULHW, MULHWU on many PowerPC CPUs

◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution

◮ Avoid these instructions

◮ Make sure that inputs to the instructions don’t leak timing
information

22



ChaCha20

◮ Stream cipher proposed by Bernstein in 2008

◮ Variant of Salsa20 from the eSTREAM software portfolio

◮ Has a state of 64 bytes, 4× 4 matrix of 32-bit words

◮ Generates random stream in 64-byte blocks, works on 32-bit integers

◮ Per block: 20 rounds; each round doing 16 add-xor-rotate
sequences, such as

a += b;

d = (d ^ a) <<< 16;
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ChaCha20

◮ Stream cipher proposed by Bernstein in 2008

◮ Variant of Salsa20 from the eSTREAM software portfolio

◮ Has a state of 64 bytes, 4× 4 matrix of 32-bit words

◮ Generates random stream in 64-byte blocks, works on 32-bit integers

◮ Per block: 20 rounds; each round doing 16 add-xor-rotate
sequences, such as

a += b;

d = (d ^ a) <<< 16;

◮ Strategy for optimizing on the M4
◮ Write quarterround function in assembly
◮ Merge 4 quarterround functions into a full round
◮ Implement loop over 20 rounds in assembly
◮ (Implement loop over message length in assembly)
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Useful features of the M4

◮ 16 state words won’t fit into registers, you need the stack
◮ Use push and pop
◮ Can also use ldr and str, ldm, stm
◮ For example: push {r0,r1} is the same as stmdb sp!, {r0,r1}
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Useful features of the M4

◮ 16 state words won’t fit into registers, you need the stack
◮ Use push and pop
◮ Can also use ldr and str, ldm, stm
◮ For example: push {r0,r1} is the same as stmdb sp!, {r0,r1}

◮ Second input of arithmetic instructions goes through barrel shifter

◮ Can shift/rotate one input for free

◮ Examples:
◮ eor r0, r1, r2, lsl #2: left-shift r2 by 2, xor to r1, store result

in r0
◮ add r2, r0, r1, ror #5: right-rotate r1 by 5, add to r0, store

result in r2
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CHES 2017, Sep. 25–28
Conference Advertisement

Apply for student-stipends until Sep. 7!
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Poly1305

◮ Designed by Bernstein in 2005

◮ Secret-key one-time authenticator based on arithmetic in Fp with
p = 2130 − 5

◮ Key k and (padded) 16-byte ciphertext blocks c1, . . . , ck are in Fp
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◮ Main work: initialize authentication tag h with 0, then compute:

for i from 1 to k do
h←h+ ci
h←h · k

end for

◮ Per 16 bytes: 1 multiplication, 1 addition in F2130−5

◮ Some (fast) finalization to produce 16-byte authentication tag
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◮ Designed by Bernstein in 2005

◮ Secret-key one-time authenticator based on arithmetic in Fp with
p = 2130 − 5
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Multiprecision arithmetic in crypto

◮ Asymmetric cryptography heavily relies on arithmetic on “big
integers”

◮ Example 1: RSA-2048 needs (modular) multiplication and squaring
of 2048-bit numbers
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Multiprecision arithmetic in crypto

◮ Asymmetric cryptography heavily relies on arithmetic on “big
integers”

◮ Example 1: RSA-2048 needs (modular) multiplication and squaring
of 2048-bit numbers

◮ Example 2:
◮ Elliptic curves defined over finite fields
◮ Typically use EC over large-characteristic prime fields
◮ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

◮ An integer is “big” if it’s not natively supported by the machine
architecture

◮ Example: AMD64 supports up to 64-bit integers, multiplication
produces 128-bit result, but not bigger than that.

◮ We call arithmetic on such “big integers” multiprecision arithmetic

◮ Example architecture for multiprecison arithmetic: AVR ATmega
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The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9
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The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9

Addition
3 + 5 = ?
2 + 7 = ?
4 + 3 = ?

Subtraction
7− 5 = ?
5− 1 = ?
9− 3 = ?

◮ All results are in the set of available numbers

◮ No confusion for first-year school kids
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Programming today

Available numbers: 0, 1, . . . , 255
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Programming today

Available numbers: 0, 1, . . . , 255

Addition

uint8_t a = 42;

uint8_t b = 89;

uint8_t r = a + b;

Subtraction

uint8_t a = 157;

uint8_t b = 23;

uint8_t r = a - b;

◮ All results are in the set of available numbers

◮ Larger set of available numbers: uint16_t, uint32_t, uint64_t

◮ Basic principle is the same; for the moment stick with uint8_t
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Still in the first year of primary school

Crossing the ten barrier

6 + 5 = ?
9 + 7 = ?
4 + 8 = ?
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Still in the first year of primary school

Crossing the ten barrier

6 + 5 = ?
9 + 7 = ?
4 + 8 = ?

◮ Inputs to addition are still from the set of available numbers

◮ Results are allowed to be larger than 9

◮ Addition is allowed to produce a carry

What happens with the carry?

◮ Introduce the decimal positional system

◮ Write an integer A in two digits a1a0 with

A = 10 · a1 + a0

◮ Note that at the moment a1 ∈ {0, 1}
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. . . back to programming

uint8_t a = 184;

uint8_t b = 203;

uint8_t r = a + b;
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◮ The result r now has the value of 131
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. . . back to programming

uint8_t a = 184;

uint8_t b = 203;

uint8_t r = a + b;

◮ The result r now has the value of 131

◮ The carry is lost, what do we do?

◮ Could cast to uint16_t, uint32_t etc.,
but that solves the problem only for this uint8_t example

◮ We really want to obtain the carry, and put it into another uint8_t

31



The AVR ATmega

◮ 8-bit RISC architecture

◮ 32 registers R0. . .R31, some of those are “special”:
◮ (R26,R27) aliased as X
◮ (R28,R29) aliased as Y
◮ (R30,R31) aliased as Z
◮ X, Y, Z are used for addressing
◮ 2-byte output of a multiplication always in R0, R1

◮ Most arithmetic instructions cost 1 cycle

◮ Multiplication and memory access takes 2 cycles

32



184 + 203

LDI R5, 184

LDI R6, 203

ADD R5, R6 ; result in R5, sets carry flag

CLR R6 ; set R6 to zero

ADC R6,R6 ; add with carry, R6 now holds the carry

33



Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137
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Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

◮ Once school kids can add
beyond 1000, they can add
arbitrary numbers

34



Multiprecision addition is old

“Oh L̄ılāvat̄ı, intelligent girl, if you understand addition and
subtraction, tell me the sum of the amounts 2, 5, 32, 193, 18,
10, and 100, as well as [the remainder of] those when
subtracted from 10000.”

—“L̄ılāvat̄ı” by Bhāskara (1150)
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AVR multiprecision addition. . .

◮ Add two n-byte numbers, returning an n+ 1 byte result:

◮ Input pointers X,Y, output pointer Z

LD R5,X+

LD R6,Y+

ADD R5,R6

ST Z+,R5

LD R5,X+

LD R6,Y+

ADC R5,R6

ST Z+,R5

LD R5,X+

LD R6,Y+

ADC R5,R6

ST Z+,R5

LD R5,X+

LD R6,Y+

ADC R5,R6

ST Z+,R5

...

CLR R5

ADC R5,R5

ST Z+,R5
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. . . and subtraction

◮ Subtract two n-byte numbers, returning an n+ 1 byte result:

◮ Input pointers X,Y, output pointer Z

◮ Use highest byte = −1 to indicate negative result

LD R5,X+

LD R6,Y+

SUB R5,R6

ST Z+,R5

LD R5,X+

LD R6,Y+

SBC R5,R6

ST Z+,R5

LD R5,X+

LD R6,Y+

SBC R5,R6

ST Z+,R5

LD R5,X+

LD R6,Y+

SBC R5,R6

ST Z+,R5

...

CLR R5

SBC R5,R5

ST Z+,R5
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How about multiplication?

◮ Consider multiplication of 1234 by 789
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How about multiplication?

◮ Consider multiplication of 1234 by 789

1234 · 789
973626
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666
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How about multiplication?

◮ Consider multiplication of 1234 by 789

1234 · 789
973626

+ 666
666
666

◮ This is also an old technique

◮ Earliest reference I could find is again the L̄ılāvat̄ı (1150)
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Let’s do that on the AVR

LD R2, X+

LD R3, X+

LD R4, X+

LD R7, Y+

MUL R2,R7

ST Z+,R0

MOV R8,R1

MUL R3,R7

ADD R8,R0

CLR R9

ADC R9,R1

MUL R4,R7

ADD R9,R0

CLR R10

ADC R10,R1
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MUL R2,R7
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MUL R3,R7

ADD R13,R0

CLR R14

ADC R14,R1

MUL R4,R7

ADD R14,R0

CLR R15

ADC R15,R1
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ST Z+,R8

ADC R9,R13
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CLR R11

ADC R11,R15
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Let’s do that on the AVR

LD R2, X+

LD R3, X+

LD R4, X+

LD R7, Y+

MUL R2,R7

ST Z+,R0

MOV R8,R1

MUL R3,R7

ADD R8,R0

CLR R9

ADC R9,R1

MUL R4,R7

ADD R9,R0

CLR R10

ADC R10,R1
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MUL R2,R7

MOVW R12,R0
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ADD R14,R0
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ADC R15,R1

ADD R8,R12
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MUL R2,R7

MOVW R12,R0

MUL R3,R7

ADD R13,R0

CLR R14

ADC R14,R1
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ADD R14,R0

CLR R15

ADC R15,R1

ADC R9,R12

ST Z+,R9

ADC R10,R13

ADC R11,R14

CLR R12

ADC R12,R15

ST Z+,R10

ST Z+,R11

ST Z+,R12
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Let’s do that on the AVR

◮ Problem: Need 3n+ c registers for n×n-byte multiplication
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Let’s do that on the AVR

◮ Problem: Need 3n+ c registers for n×n-byte multiplication

◮ Can add on the fly, get down to 2n+ c, but more carry handling
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Can we do better?

“Again as the information is understood, the multiplication of
2345 by 6789 is proposed; therefore the numbers are written
down; the 5 is multiplied by the 9, there will be 45; the 5 is put,
the 4 is kept; and the 5 is multiplied by the 8, and the 9 by the
4 and the products are added to the kept 4; there will be 80;
the 0 is put and the 8 is kept; and the 5 is multiplied by the 7
and the 9 by the 2 and the 4 by the 8, and the products are
added to the kept 8; there will be 102; the 2 is put and the 10
is kept in hand. . . ”

From “Fibonacci’s Liber Abaci” (1202) Chapter 2
(English translation by Sigler)
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Product scanning on the AVR

LD R2, X+

LD R3, X+

LD R4, X+

LD R7, Y+

LD R8, Y+

LD R9, Y+

MUL R2, R7

MOV R13, R1

STD Z+0, R0

CLR R14

CLR R15

MUL R2, R8

ADD R13, R0

ADC R14, R1

MUL R3, R7

ADD R13, R0

ADC R14, R1

ADC R15, R5

STD Z+1, R13

CLR R16

MUL R2, R9

ADD R14, R0

ADC R15, R1

ADC R16, R5

MUL R3, R8

ADD R14, R0

ADC R15, R1

ADC R16, R5

MUL R4, R7

ADD R14, R0

ADC R15, R1

ADC R16, R5

STD Z+2, R14

CLR R17

MUL R3, R9

ADD R15, R0

ADC R16, R1

ADC R17, R5

MUL R4, R8

ADD R15, R0

ADC R16, R1

ADC R17, R5

STD Z+3, R15

MUL R4, R9

ADD R16, R0

ADC R17, R1

STD Z+4, R16

STD Z+5, R17
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Even better. . . ?

From the Treviso Arithmetic, 1478 (http://www.republicaveneta.
com/doc/abaco.pdf)

42
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Hybrid multiplication

◮ Idea: Chop whole multiplication into smaller blocks

◮ Compute each of the smaller multiplications by schoolbook

◮ Later add up to the full result

◮ See it as two nested loops:
◮ Inner loop performs operand scanning
◮ Outer loop performs product scanning
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Hybrid multiplication

◮ Idea: Chop whole multiplication into smaller blocks

◮ Compute each of the smaller multiplications by schoolbook

◮ Later add up to the full result

◮ See it as two nested loops:
◮ Inner loop performs operand scanning
◮ Outer loop performs product scanning

◮ Originally proposed by Gura, Patel, Wander, Eberle, Chang Shantz,
2004

◮ Various improvements, consider 160-bit multiplication:
◮ Originally: 3106 cycles
◮ Uhsadel, Poschmann, Paar (2007): 2881 cycles
◮ Scott, Szczechowiak (2007): 2651 cycles
◮ Kargl, Pyka, Seuschek (2008): 2593 cycles
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Operand-caching multiplication

◮ Hutter, Wenger, 2011: More efficient way to decompose
multiplication

◮ Inside separate chunks use product-scanning

◮ Main idea: re-use values in registers for longer
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Operand-caching multiplication

◮ Hutter, Wenger, 2011: More efficient way to decompose
multiplication

◮ Inside separate chunks use product-scanning

◮ Main idea: re-use values in registers for longer

◮ Performance:
◮ 2393 cycles for 160-bit multiplication
◮ 6121 cycles for 256-bit multiplication

◮ Followup-paper by Seo and Kim: “Consecutive operand caching”:
◮ 2341 cycles for 160-bit multiplication
◮ 6115 cycles for 256-bit multiplication

44



Multiplication complexity

◮ So far, multiplication of 2 n-byte numbers needs n2 MULs

◮ Kolmogorov conjectured 1952: You can’t do better, multiplication
has quadratic complexity
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Multiplication complexity

◮ So far, multiplication of 2 n-byte numbers needs n2 MULs

◮ Kolmogorov conjectured 1952: You can’t do better, multiplication
has quadratic complexity

◮ Proven wrong by 23-year old student Karatsuba in 1960

◮ Idea: write A · B as (A0 + 2mA1)(B0 + 2mB1) for half-size
A0, B0, A1, B1

◮ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

◮ Recursive application yields Θ(nlog
2
3) runtime

◮ Can do more on Karatsuba on microcontrollers later. . .

45



What changes on the Cortex-M4?

◮ 32-bit registers; multiplier produces 64-bit result
◮ Different instruction set, and instruction timings
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What changes on the Cortex-M4?

◮ 32-bit registers; multiplier produces 64-bit result
◮ Different instruction set, and instruction timings
◮ More flexibility to represent big integers!
◮ So far, represent, e.g., 130-bit integer A as (a0, a1, a2, a3, a4) with

A =

4∑

i=0

ai2
32i

◮ Highest coefficient really needs only two bits
◮ Need to handle carries the whole time
◮ Alternative representation: (a0, a1, a2, a3, a4) with

A =

4∑

i=0

ai2
26i

◮ Now the representation is “redundant”, e.g., 227 can be written as
(227, 0, 0, 0, 0) or (0, 2, 0, 0, 0)

◮ Carry handling can be delayed (“carry-save representation”)
◮ Much easier to write code in C!
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Elements of F2130−5 in radix-226

typedef struct {

uint32_t v[5];

} gfe;

void gfe_add(gfe *r, const gfe *a, const gfe *b)

{

int i;

for(i=0;i<5;i++)

r->v[i] = a->v[i] + b->v[i];

}

Note that this code would be the same for polynomial arithmetic!
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. . . and multiplication

int i,j;

uint64_t t[9];

for(i=0;i<9;i++) t[i] = 0;

for(i=0;i<5;i++)

for(j=0;j<5;j++)

t[i+j] += (uint64_t)a->v[i] * b->v[j];

for(i=5;i<9;i++) t[i-5] += 5*t[i];

for(i=0;i<4;i++) {

t[i+1] += t[i] >> 26;

t[i] &= 0x3ffffff;

}

t[0] += 5*(t[4] >> 26);

t[4] &= 0x3ffffff;

t[1] += t[0] >> 26;

t[0] &= 0x3ffffff;

for(i=0;i<5;i++)

r->v[i] = t[i];
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Useful features of the M4

◮ Mainly the multiply and multiply-accumulate instructions UMULL
and UMLAL

◮ UMULL produces multiplication result in two 32-bit registers

◮ UMLAL accumulates multiplication result into two 32-bit registers
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Useful features of the M4

◮ Mainly the multiply and multiply-accumulate instructions UMULL
and UMLAL

◮ UMULL produces multiplication result in two 32-bit registers

◮ UMLAL accumulates multiplication result into two 32-bit registers

Optimization strategy on the M4

◮ Reference implementation uses radix 28

◮ Change to radix 226 (in C, see code from previous slides)

◮ Implement “unpack” and “pack” to convert from byte arrays

◮ Implement modular multiplication and addition

◮ Once this works in C, move to assembly ;-)
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Let’s start

◮ Download https://cryptojedi.org/peter/data/

stm32f4examples.tar.bz2

◮ Unpack: tar xjvf stm32f4examples.tar.bz2

◮ Connect STM32F4 Discovery board with Mini-USB cable

◮ Connect USB-TTL: RX to PA2, TX to PA3

◮ Open terminal, run host_unidirectional.py

◮ Build some project, e.g., accumulate using make

◮ Flash accumulate1.bin to the board:

st-flash write accumulate1.bin 0x8000000

◮ Push “reset” button to start/restart program

◮ Now go for ChaCha20 and Poly1305
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