Making decryption accountable

Mark Ryan

HP Inc Labs, Bristol
Univ. of Birmingham

Secure Implementation of Cryptographic Software
Lesbos, Greece
August 2017

Twenty-fifth International Workshop on
Security Protocols (SPW’17)
21 March 2017

HotSpot at ETAPS
23 April 2017

Going out tonight?

 Teenager wants
privacy

* Parent wants security

Investigatory Powers Act 2016

nd the

L Sl
P. ¥ gk
the Hoase of
A
il alkve BAIS g i
B all fuw grbrm
[E T T o
oy Jahn Haughton
B ¢ imakl e e e
il guily Lkl prowen
[

The Observer

Surveila
a

Your privacy ends here

* Gilves Gov wide-
ranging snooping and
Interference powers

* Oversight is
unverifiable

* Making decryption
accountable is
potentially a step
towards verifiable
oversight

Corporate emal

e Corporation may
need to access
employee emall

* But employees may
expect some
transparency

86668 Mew Update. =
A o) - i
e e s TR
~ GetMail Reply ReplyAll Forward Assign Topic Archive Delete Write
New Update. To-Do Edit
LHSBC | 13/01/2011 20:34 -

o

HSBC X»

The world's local bank

Dear Customer,

Due to recent upgrade of our database in a bid to enhance our online services and
customer satisfaction for the new banking season.

You are required to upgrade you online banking account to enable you to have access
and enjoy the new features to our online banking

Yol will he nrovided with stens to unarade simnlv loain to vour Account helow tn oet started

“JMail || g AddressBook || [[Tasks || 40 Preferences
f Folders Cd 4| |2 send ~ E3 cancel | [# SaveDraft 42 Add A
- E, Inbox (T6345)
£ sent (13) 2] Send [Ctrl+Enter] Bining <techtraining@stanford.«
[# Drafts (4 <} Send Later... s
EE.‘J' Junk [186) stanford.edu
{E Trash Ce: |

] Apple Mail To Do

|| Deleted Messages
] INBCXSent Messages
[Journal

[Junk E-malil

|| Notes "
] RSS Feeds

[sent Messages

Subject: Important email

Lorem ipsum dolor sit amet, consect
ornare tristigue. Morbi molestie we
adipiscing a, sodales sed dui. Fusc
lectus ac tellus. Sed sem elit, auc
dignissim felis lobortis ac. Fusce
tortor elit, elementum nec tincidur

Mobile phone and IoT sensor data

* “FInd my iphone” requires you to continuously
send your |location to Apple

- You'd get to know when they decrypt it

* More generally, decryption accountability
potentially enables detection of policy
violations in loT sensor data.

Electronic voting

» Voter’s client software encrypts her vote,
using a public key pk, and sends it to server.

* ... MiX nets ... homomorphic combination ...
verification of zkps ...

* The result Is decrypted, using the secret key
sk corresponding to pk.

- We'd like to know that individual voters’ votes are
not decrypted.

Reqguirements

» Users create ciphertexts using a public key pk.

* Decrypting agent Y is capable of decrypting the
ciphertexts without any help from the users.

 When Y decrypts ciphertexts, it unavoidably
creates evidence e that is accessible to users.
The evidence cannot be suppressed or
discarded without detection.

By examining e, users gain some information
about the quantity and nature of the decryptions
being performed.

This requires hardware

 If Y has a ciphertext and a decryption key, it is impossible
to detect whether she applies the key to to ciphertext or
not.

- The decryption key has to be guarded by a hardware device D
that controls its use.

 What is a minimal specification for D that will give us
the desired properties?

 |dea of this paper: propose a simple generic design that
achieves the desired functionality.

Core i1dea

 There is a log L in which all decryption requests are
recorded.

- D will perform a decryption only if the request is accompanied
by a proof that it has been entered into L.

* Someone maintains L, but we minimise the requirement
to trust that maintainer.

- The maintainer of L is not required to be trusted w.r.t. integrity
of L. If the maintainer cheats, e.g. by deleting/modifying
entries from L, or by forking L, users can detect that.

- The maintainer is required to be trusted for confidentiality, so
we design L so that confidentiality isn't required.

The log L

 The log L Is organised as an append-only
Merkle tree

- as used In, for example, certificate transparency

* The maintainer periodically publishes the root
tree hash (RTH) H of L

RTH = h(h(1,2),3)

h(1,2)

/\

1 2 3

RTH = h(h(1,2),h(3,4))

/N

h(1,2) h(3,4)

ANA

RTH = h(h(h(1,2),n(3,4)), 5)

h(h(1,2),h(3,4))

/N

h(1,2) h(3,4)

ANA

RTH=nh(h(h(1,2),h(3,4)),h(5,6))

h(h(1,2),h(3,4))

>

RTH=nh(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))
h(1,2) h(3,4) h(5,6) h(7,8)

RTH=h(h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8))),9)

h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

The log L

 The log L Is organised as an append-only Merkle tree
- as used In, for example, certificate transparency

* The maintainer periodically publishes the root tree
hash (RTH) H of L

 The maintainer Is capable of generating two kinds of
proof about the log's behaviour:

- A proof 1t that some data item d is in the tree with RTH H

- A proof p that the tree with RTH H' Iis an append-only
extension of the tree with RTH H

» All the ops, incl gen and verif of proofs, are O(log n)

Decrypting agent Y Hardware device D

sk, dk, H
R
{r '
Enter R into L
Obtain H'
Obtain : Rin H'
 Obtain p: H extends H |
R1 H" T[1 p
..
" VerifymRinH
Verify p: H' extends H
result := dec(dk, R)
H:=H
result
-
result

Evidence of decryption in L

* Evidence about decryptions is obtained by
Inspecting L, which contains the decryption
reguests.

- Example 1: L contains a hash of the ciphertext that is
decrypted. This allows a user U to detect if ciphertexts
she produced have been decrypted.

- Example 2: L contains a unigue value representing the
decrypted ciphertext, but the value cannot be tied to a
particular ciphertext (for example, the value could be
the hash of a re-encryption). This allows users to see
the number of ciphertexts decrypted, but not which
particular ones.

Insecure!

* The log provider could maintain two versions of the log:

- The one it shows to users: it has no decryption requests in it, so
users are happy

- The one it shows to D: it has lots of decryption requests in it, so D
decrypts a lot of data

 The users and D each verify that the version they see Is
maintained append-only. But they can't detect that they are
different versions.

* The usual way of addressing this attack is “gossip protocols”.
- Doesn't work here.

. To defeat the fork attack, sk di

we Iintroduce a second
protocol for D v

* D periodically signs a
cryptographic beacon v.

- A cryptographic beacon is result := Sign(sk, (vH))

an unpredictable but
verifiable value. result

» Sign(sk, (v,H)) assures
users that:
D had RTH H at “time” v

Verifiably unpredictable values

* \WWe want to generate an unpredictable value
which can be verified to have been generated
after a given timepoint.

® O n e S i m p I e i d e a: eve ryo n e RTH=h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

contributes a random value,
and we hash all the values.

h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

Verifiably unpredictable values

* \WWe want to generate an unpredictable value
which can be verified to have been generated
after a given timepoint.

® O n e S i m p I e i d e a: eve ryo n e RTH=h(h(h(1,2),h(3,4)),h(h(5,6),h(7,8)))

contributes a random value,
and we hash all the values.
h(h(1,2),h(3,4)) h(h(5,6),h(7,8))

 Another idea: wy hes hes wos

cryptographic beacons A A A A
e.g., based on stock market : : s « s & 7

Indices

Proposal: a device D with two protocols

D stores: H, dk, sk

e Input: R, H', T, p e Input: v

« Compute: Compute
- Verify . RiIn H’ - Result :=
- Verify p: H' extends H Sign(sk, (v,H))
- result := dec(dk, R) » Output result
-H=H

o Output: result

Conclusion

* The decrypting agent has no way to decrypt data
without leaving evidence in the log, unless it can break
the hardware device D.

 Who manufactures D?

- How can the relying parties (both users Ul . .. and decrypting
agents Y) be assured that it will behave as specified?

 One idea is that it is jointly manufactured by an

International coalition of companies with a reputation
they wish to maintain.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

