got crypto?

On the (in)security of a Self-Encrypting
Drive series

Finse Winter School 2018
Gunnar Alendal

Gunnar Alendal:

Cand.Scient (old skool) in Cryptography from the University of Bergen,
UiB, Norway.

Reverse engineering anything with an opcode; x86, x64, ARM, MIPS,
M68k, ARC, 8051, ..

Security researcher with 18+ years of professional experience.

"Old"” research from 2015 (eprint 2015/1002)
Still very relevant
Everything is a SoC = “FW is the new SW”

HW/FW less exposed to security research
Rarely open source = Reverse engineering

Research motivation

Is HW crypto more secure?

My Passport / Book

Self-encrypting external HDD series*

Crypto done in either:
1. 1st-gen :USB/FW-to-SATA bridge

2. 2nd-gen :HDD itself
Can't fit everything in talk = read full paper

Host computer

WD software

¢

USB /FW

My Passport

USB/FW Bridge

Bridge
firmware

SATA

HDD

>

HDD firmware

Different USB bridges researched

Vendor Model (1st-gen/2nd-gen) | Architecture
JMicron JMS538S Intel 8051
Symwave SW6316 Motorola M68k

PLX OXUF943SE ARMY7

User PW = Key-Encryption-Key (<"):
o KDF(salt+PW) =

o salt + KDF iterations are in SW
protects Data-Encryption-Key (DEK)
DEK = holy long-term HW AES Key

1st-gen bridges

Host computer

My Passport / My Book

S Protected
S0 B KEK / DEK
y Y
KEK
SiEe 256-bit | KEK
: 7 lidati
1000 OxC1E1 validation
-
no

R

Protected
DEK (eDEK)

L]

unprotect

Y

DEK

DEK

Y

CHW AES engine)

V4

2

The protected DEK - eDEK

e a -encrypted blob containing the raw
DEK

e eDEK stored on disk + USB bridge EEPROM
o EEPROM is marked “U14” on most PCBs

o retrieve eDEK = off-device pw brute force

Host computer

My Passport / My Book

sl Protected
il DEK (eDEK)
. KEK y
SH/?(ZSG 256-bit = AES-ECB
1000 OXC1E1 decrypt

correct y
magic?

DEK

Mandatory HW encryption
e NoPWset & Haradcoded < unlocks DEK

e . ="PI" AES-256 key

no pw + broken USB bridge? no problem:

o eDEK stored on HDD + EEPROM
o decrypt eDEK with “PI"” = DEK decrypts HDD

pw set? off-device brute force

o Constant salt + KDF iteration counter

o GPU-impl. benchmark: ~1 mill pw/s (single card)
o Pre-calculated hash/rainbow-table

no EEP

= QW

eDEK
ROM on boot..

USB-to-SATA

bridge or “DFU mode”
= read eDEK from HDD

| F A2531FE

VID/PID: 1058/0748
Bridge: JMS538S

Retrieve the eDEK

o - “no eeprom for you”

o - PC-3k / “no eeprom for you”

o - SATA + hidden eDEK sector
_ - “no eeprom for you” + 3-byte

FW patch to dump eDEK

Attackers progress...

Model no pw set, | pw brute force | break auth. crack DEK
recovery
JMS538S 4 4

v v

Breaking auth. - aka. backdoors

e Two 1st-gen chips fail on authentication

o stores the in EEPROM/HDD
Protection: Hardcoded key (0x29A2607A. .)

$ saves a “PI” encrypted eDEK
Protection: Hardcoded key (0x03141592..)

Host computer

SW6316

* 0x29a2607a...

Salt + Wrapped
user pw KEK
Y
RFC 3394
AES unwrap
Y KEK ‘
SHA256 256-bit
X memcmp
1000 0xC1E1
equal?

no

yes

Wrapped
DEK

Y

RFC 3394

AES unwrap

DEK

Y

CHW AES engine)

.

’ 4
(é;?\/

Attackers progress...

Model no pw set, pw brute break auth. crack DEK
recovery | force

JMS538S 4 v

v v v

..but before we crack DEKs:

bridges
with no AES

no HW AES in USB bridge

HDD does crypto:
“ATA Security Feature Set”; ATA OxF1, OxF2, ...

VSC “status” (0xC045) reports only cipher
mode 0x30 (FDE)

INIC-3608 backdoor

e INIC-3608 does authentication, no crypto

o EEPROM, U14, contains the raw !

e Dump EEPROM = Get = authenticate
e ..or get with secret VSC = authenticate

Host computer INIC-3608
Salt + pla|n
{ user pw ; KEK
\ 4 v
KEK
SHA256 256-bit
X > memcmp
1000 0xC1E1
es
equal? %
KEK
no 256-bit

HDD

UNLOCK
OxF2

Host computer

Get KEK

A A

authenticate

INIC-3608
plain
0x... KEK
Y
> memcmp
0xC1E1
yes

HDD

UNLOCK
OxF2

equal?

INIC-3608 Backdoor

Connect to pc3kin kernel-mode

o Get privileges as always by bit shifting

o Erase ATA-module XX

o HDD unlocks, decrypting everything on the fly

By now, pc3k found their own way
o Details in the forums

Attackers progress...

Model no pw set, recovery | pw brute force break auth. | crack DEK
JMS538S v v
v v v

SW6316

JMS538S and INIC-1607E
still standing tall*

Host computer

Salt +
user pw

Y

KEK

My Passport / My Book

/

Protected
DEK (eDEK)

Y

SHAx256 256-bit | | AES-ECB
1000 OXC1E1 decrypt

correct yes
magic?

brute Force? :(

brute fForce??

v

DEK

Y

CHW AES engine)

y
| ¥ 4

Crack DEK directly?
e How is the HW AES-256 DEK created?

e Entropy source?

DEK

How is the DEK created on a device “erase’”?
o aka. “l forgot my password”

Entropy source(s)?

Can we assume the Factory uses this “erase”
command?

DEK
“erase” VSC: CDB[0:1] = OxC1E3

2 entropy sources:
o host computer = Key material source 1
o on-board RNG = Key material source 2

Host computer (Win)

JMS538S

RNG

llpln
KEK

L]

AES-256
encrypt

DEK

GetTickCount()*
Key material
32-bit source 2
3£-DIC ; sl
KCV [H{JL. ZSD b]L
Y source 1 Y
sprintf 256-bit .
] XOR
[EpeakXE OXC1E3

Y

CEEPROM / HDD)

* Fixed in newer versions of WD SW

Implemented in chip “somewhere”
Gather samples and plot

Gather by “status” (4 bytes) or “erase” (32
bytes) VSC

an

BA 11G-Q| JOMOT]

40000 50000 60000

30000
Upper 16-bit value

(Y

40000
30000

an|eA }1g-9| Jamo

20000

10000

T

60000

50000

30000 40000
Upper 16-bit value

20000

10000

o

“status” command masks RNG output:
xor with 0x271828af

“erase” uses raw RNG - no mask

RNG turns out to be a 8-bit LFSR with
period 255

..eh, a RNG with period of 255?!
..adding a poor ~28 to the complexity!

.50 we have total 232 x ~28 = ~240
complexity!

You erase the drive + set sooper pw

We recover the DEK with 2*° complexity
o ~23¢if set from a MAC

..done in “no time"” on any computer

uPln
KEK

L]

AES-256
encrypt

DEK

Host computer (Win) JMS538S
RNG
GetTickCount()*
Key material
32-bit source 2
54-DIC .
Key mat. 256-bit
L4 source 1 Y
sprintf 256-bit -
repeat x 8 OxC1E3

Y

CEEPROM / HDDD

* Fixed in newer versions of WD SW

“most people don't erase their drives”
..50 what about the factory set DEKs?

Does the factory use the “erase” command?

Grab factory set DEK from an eDEK +
reverse the “erase” command flow

Generate 255 possible “Host provided key
material” (source 1)

Find the correct one by guessing...?

JMS538S Factory keys - RNG leak
e The default out-of-the-box eDEK leaks

o Decrypted eDEK leaks RNG status at
creation time

e ...Whichis the same time as DEK creation!

Magic

CRC

Unknown

random1

key Ox3ee2 128 bit
random2

key 0Ox3ef2 128 bit
random3

key 0x3f02 256 bit

0x00:
0x04:
0x06:
0x08:
0OxOc:
Ox1c:
0x20:
0x30:
0x34:

ren ! Factory DEK

0000 /
b1f065be

dde91629a8f503a41847e9956386a5d3
22298576
fea9c0d0ad395397772420a0563a604b
074195db

3b00e3001f7002700e1004d003800040069003e00d70048000c00bb0042006400

random4
key size (byte)
Unknown

0x54:
0x58:
0x59:

8e832cf3
20 => 256 bits
00000000000000

RNG status leak

JMS538S Factory keys - RNG leak

e The default out-of-the-box eDEK says it all
e |t gives the raw DEK

o +the state of the RNG after DEK creation

o = We know the host provided key material!

Raw stream: 14 F9 DD 69 49 81 D4 63 CE 22 30 51 23 1B 2C 18 28 3B
3D 15 OF 3F 98 39 E4 C3 1F 4A 57 F3 9A 79

Little endian, 32-bit values: 63D48149 513022CE 182C1B23
153D3B28 39983F0F 4A1FC3E4

srand(0x4fd45d3f) ¢ Seed with this...
rand() = ¢ ... and get these

rand() = 63D48149 € ...

rand() = c ...

srand(0x4fd45d37) is the entropy source
0x4fd45d3f= UNIX time

0x4fd45d3f= 2012-06-10 08:39:27 UTC
It was on a Sunday ..and it was sunny

DEK created: 10 JUN 2012 08:39:27 UTC

Ouch!

HDDs have a
rinted

broduction
date..

DEK

a single 128-bit known-plaintext AES block
needed from HDD =e.g. E__ (00..00)

DEK(

Recover the 256-bit DEK with 23¢
complexity:

o Brute force creation time (2007 - 2015) + RNG state

JMS538S factory DEK attack

e ..donein “no time” on any computer

e ..orinstant with a 1.2 TB lookup-table!
o pre-gen all 23% possible factory DEKs

o store E_._ (00..00) + seed + RNG idx

DEK(

JMS538S Factory DEK attack

Attackers progress...

Model no pw set, recovery | pw brute force break auth. | crack DEK
JMS538S v v v
v v v

SW6316

badUSB and evil-maid?

can patch FW devices, pre authentication =
bad, bad USB

..resulting in spreading of evilness

malware in 8051, M68k and ARC. Infect-on-the-fly.
no easy clean (self-protecting evil FW)

add crypto backdoor

nullifying poor auth. schemes

e O O

All 6 bridges analyzed had serious security
vulnerabilities

3 bridges have backdoors, 2 weak key
setup, 1 broken auth.

All 6 vulnerable to unauthorized FW
patching = badUSB, evil-maid, ..

Thank You, WD and EFF

