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"Old"” research from 2015 (eprint 2015/1002)
Still very relevant
Everything is a SoC = “FW is the new SW”

HW/FW less exposed to security research
Rarely open source = Reverse engineering



Research motivation

Is HW crypto more secure?




My Passport / Book

Self-encrypting external HDD series*

Crypto done in either:
1. 1st-gen :USB/FW-to-SATA bridge

2. 2nd-gen :HDD itself
Can't fit everything in talk = read full paper
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Different USB bridges researched

Vendor Model (1st-gen/2nd-gen) | Architecture
JMicron JMS538S Intel 8051
Symwave SW6316 Motorola M68k

PLX OXUF943SE ARMY7




User PW = Key-Encryption-Key (<" ):
o KDF(salt+PW) =

o salt + KDF iterations are in SW
protects Data-Encryption-Key (DEK)
DEK = holy long-term HW AES Key



1st-gen bridges
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The protected DEK - eDEK

e a -encrypted blob containing the raw
DEK

e eDEK stored on disk + USB bridge EEPROM
o EEPROM is marked “U14” on most PCBs

o retrieve eDEK = off-device pw brute force
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Mandatory HW encryption
e NoPWset & Haradcoded < unlocks DEK

e . ="PI" AES-256 key




no pw + broken USB bridge? no problem:

o eDEK stored on HDD + EEPROM
o decrypt eDEK with “PI"” = DEK decrypts HDD

pw set? off-device brute force

o Constant salt + KDF iteration counter

o GPU-impl. benchmark: ~1 mill pw/s (single card)
o Pre-calculated hash/rainbow-table



no EEP

= QW

eDEK
ROM on boot..

USB-to-SATA

bridge or “DFU mode”
= read eDEK from HDD

| F A2531FE

VID/PID: 1058/0748
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Retrieve the eDEK

o - “no eeprom for you”

o - PC-3k / “no eeprom for you”

o - SATA + hidden eDEK sector
_ - “no eeprom for you” + 3-byte

FW patch to dump eDEK



Attackers progress...

Model no pw set, | pw brute force | break auth. crack DEK
recovery
JMS538S 4 4
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Breaking auth. - aka. backdoors

e Two 1st-gen chips fail on authentication

o stores the in EEPROM/HDD
Protection: Hardcoded key (0x29A2607A. .)

$ saves a “PI” encrypted eDEK
Protection: Hardcoded key (0x03141592..)



Host computer

SW6316

* 0x29a2607a...

Salt + Wrapped
user pw KEK
Y
RFC 3394
AES unwrap
Y KEK ‘
SHA256 256-bit
X memcmp
1000 0xC1E1
equal?

no

yes

Wrapped
DEK

Y

RFC 3394

AES unwrap

DEK

Y

CHW AES engine)

.

’ 4
(é;?\/




Attackers progress...

Model no pw set,  pw brute break auth. crack DEK
recovery | force
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..but before we crack DEKs:

bridges
with no AES



no HW AES in USB bridge

HDD does crypto:
“ATA Security Feature Set”; ATA OxF1, OxF2, ...

VSC “status” (0xC045) reports only cipher
mode 0x30 (FDE)



INIC-3608 backdoor

e INIC-3608 does authentication, no crypto

o EEPROM, U14, contains the raw !

e Dump EEPROM = Get = authenticate
e ..or get with secret VSC = authenticate
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INIC-3608 Backdoor




Connect to pc3kin kernel-mode

o Get privileges as always by bit shifting

o Erase ATA-module XX

o HDD unlocks, decrypting everything on the fly

By now, pc3k found their own way
o Details in the forums



Attackers progress...

Model no pw set, recovery | pw brute force break auth. | crack DEK
JMS538S v v
v v v

SW6316




JMS538S and INIC-1607E
still standing tall*
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Crack DEK directly?
e How is the HW AES-256 DEK created?

e Entropy source?




DEK

How is the DEK created on a device “erase’”?
o aka. “l forgot my password”

Entropy source(s)?

Can we assume the Factory uses this “erase”
command?



DEK
“erase” VSC: CDB[0:1] = OxC1E3

2 entropy sources:
o host computer = Key material source 1
o on-board RNG = Key material source 2
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Implemented in chip “somewhere”
Gather samples and plot

Gather by “status” (4 bytes) or “erase” (32
bytes) VSC
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“status” command masks RNG output:
xor with 0x271828af

“erase” uses raw RNG - no mask

RNG turns out to be a 8-bit LFSR with
period 255



..eh, a RNG with period of 255?!
..adding a poor ~28 to the complexity!

.50 we have total 232 x ~28 = ~240
complexity!



You erase the drive + set sooper pw

We recover the DEK with 2*° complexity
o ~23¢if set from a MAC

..done in “no time"” on any computer
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“most people don't erase their drives”
..50 what about the factory set DEKs?

Does the factory use the “erase” command?



Grab factory set DEK from an eDEK +
reverse the “erase” command flow

Generate 255 possible “Host provided key
material” (source 1)

Find the correct one by guessing...?



JMS538S Factory keys - RNG leak
e The default out-of-the-box eDEK leaks

o Decrypted eDEK leaks RNG status at
creation time

e ...Whichis the same time as DEK creation!



Magic

CRC

Unknown

random1

key Ox3ee2 128 bit
random2

key 0Ox3ef2 128 bit
random3

key 0x3f02 256 bit

0x00:
0x04:
0x06:
0x08:
0OxOc:
Ox1c:
0x20:
0x30:
0x34:

ren ! Factory DEK

0000 /
b1f065be

dde91629a8f503a41847e9956386a5d3
22298576
fea9c0d0ad395397772420a0563a604b
074195db

3b00e3001f7002700e1004d003800040069003e00d70048000c00bb0042006400

random4
key size (byte)
Unknown

0x54:
0x58:
0x59:

8e832cf3
20 => 256 bits
00000000000000

RNG status leak



JMS538S Factory keys - RNG leak

e The default out-of-the-box eDEK says it all
e |t gives the raw DEK

o +the state of the RNG after DEK creation

o = We know the host provided key material!



Raw stream: 14 F9 DD 69 49 81 D4 63 CE 22 30 51 23 1B 2C 18 28 3B
3D 15 OF 3F 98 39 E4 C3 1F 4A 57 F3 9A 79

Little endian, 32-bit values: 63D48149 513022CE 182C1B23
153D3B28 39983F0F 4A1FC3E4

srand(0x4fd45d3f) ¢ Seed with this...
rand() = ¢ ... and get these

rand() = 63D48149 € ...

rand() = c ...



srand(0x4fd45d37) is the entropy source
0x4fd45d3f= UNIX time

0x4fd45d3f= 2012-06-10 08:39:27 UTC
It was on a Sunday ..and it was sunny



DEK created: 10 JUN 2012 08:39:27 UTC

Ouch!

HDDs have a
rinted

broduction
date..




DEK

a single 128-bit known-plaintext AES block
needed from HDD =e.g. E__ (00..00)

DEK(

Recover the 256-bit DEK with 23¢
complexity:

o Brute force creation time (2007 - 2015) + RNG state



JMS538S factory DEK attack

e ..donein “no time” on any computer

e ..orinstant with a 1.2 TB lookup-table!
o pre-gen all 23% possible factory DEKs

o store E_._ (00..00) + seed + RNG idx

DEK(



JMS538S Factory DEK attack




Attackers progress...

Model no pw set, recovery | pw brute force break auth. | crack DEK
JMS538S v v v
v v v

SW6316




badUSB and evil-maid?




can patch FW devices, pre authentication =
bad, bad USB

..resulting in spreading of evilness

malware in 8051, M68k and ARC. Infect-on-the-fly.
no easy clean (self-protecting evil FW)

add crypto backdoor

nullifying poor auth. schemes

e O O



All 6 bridges analyzed had serious security
vulnerabilities

3 bridges have backdoors, 2 weak key
setup, 1 broken auth.

All 6 vulnerable to unauthorized FW
patching = badUSB, evil-maid, ..



Thank You, WD and EFF




