
Approximate Search and

Data Reduction Algorithms

Research Questions

Kyle Porter
NTNU Gjøvik

2

Outline of Presentation

• Introduction:

– Problems

– General Goals

• Research Questions

– Brief theoretical/practical background

– Methodological approach

• Conclusion

3

What’s the Problem?

• There is too much data to process

– Been known since 2004 that basic string processing

algorithms are insufficient.

– Backlogs of digital evidence awaiting analysis has real

world consequences.

• It is difficult to defend against the variety of

network attacks.

– Current approximate matching techniques produce too

many false positives.

– Knowledgeable attackers can generally bypass IDS

4

Goals

• Improve accuracy of approximate search

techniques

– Return more reliable approximate search results

• Build on and improve data reduction techniques.

– Have a competent method of analyzing data without

needing close examination.

– Improvements in speed, memory consumption, accuracy

are all welcome.

• Primary development for Big Data analysis and

IDS.

5

Research Question 1

• How can we implement constrained edit

operations into approximate string matching in an

efficient way supported by theory, and how can we

extend existing algorithms to support constrained

edit distance?

6

RQ1 Background

• Approximate string matching problem:
– find pattern p in text T such that p and some substring x

of T approximately resemble each other.

• Reason for large number of inaccuracies is due to
the resemblance metric.

• Levenshtein (edit) distance: minimum number of
insertions, deletions, substitutions necessary to
transform one string into another.

• The neighborhood of possible matches can be
large.
– E.g. For allowed edit distance of 3, the word “secure”

approximately matches “scurry”.

7

String Transformation Example

8

RQ1: Background

• We propose use of constrained edit distance.

– Each edit operation is constrained.

– The distance between strings is measured by the minimum

number of allowed edit operations given the constraints.

• E.g. If no insertions allowed, one deletion, and two

substitutions are allowed, then “secure” does not

approximately match “scurry” under the constraints.

• The matching neighborhood has been reduced to an

area defined by the constraints.

• Motivation: if you have a priori knowledge of expected

errors/obfuscation, then you can obtain more accurate

results.

9

RQ1: Methodology

• Develop Hypotheses

• State-of-the-art approximate matching algorithms

primarily use two theoretical :

– Dynamic Programming Matrices

• Flexibility with metrics

– Deterministic and Nondeterministic finite automata

• DFA’s faster, run in linear time, but have exponential

memory consumption.

• NFA’s are often easier to design, far fewer necessary

states, slower since they must be simulated.

10

Research Question 1.a

• How can we increase the efficiency of any

approximate string matching algorithms we create

by utilizing existing techniques?

11

RQ 1.a Methodology

• Bit-parallelism

– Simulate nondeterministic finite automata

– Test all possible edit operations of each pattern character

in parallel.

• Filtering

– Skip text

• Dynamic Programming speedups.

12

Research Question 2

• How could constrained approximate search be

effectively realized in various kinds of hardware?

13

RQ2: Methodology

• Multi-pattern search algorithms have been

implemented into specialized hardware (ASIC,

FPGA, GPU) with very good results.

• Actual implementation into hardware will likely a

require a partner.

• Item of interest is bit-splitting implementation.

– Far more scalable methodology (w.r.t memory)

– Can be applied to general state machines

14

Testing Algorithms

• For any algorithm we create:

– Perform an average and worse case time and memory

complexity analysis.

– Perform tests with different character sets, edit

constraints, pattern lengths, and text corpora.

– Compare results with state-of-the-art.

• Important data:

– Accuracy

– Time consumption

– Memory Consumption

15

Research Question 3

• How can we reduce the size of data processed by

these research algorithms and preserve the

similarity between the data objects at the same

time?

16

RQ3: Background

• Similarity-preserving hash functions, or fuzzy

hashes.

• Similar in use to cryptographic hashes, but no

avalanche effect.

– For similar inputs m and n into the fuzzy hash function,

the output x and y will also be very similar.

• Goals:

– Identify that two digital artifacts resemble each other

– Embedded object detection

– Detect traces of known artifact

– Detect if two artifacts share a common object.

17

RQ3 Background

• Output of a fuzzy hash is called a sketch.

– This is a feature vector.

• Comparisons of sketches typically compare each

feature, and return a binary yes/no match result.

• Hamming distance or Levenshtein distance often

used for determining similarity.

• Levels of abstraction:

– Byte-wise

– Syntactic

– Semantic

18

RQ3 Methodology

• Study the existing methodology and look for

potential areas of improvement:

– Context triggering piecewise hashing and rolling hashes.

– Use of Shannon Entropy

• Look for practical non-cryptographic hash

functions, as well as other potential

methodologies.

• Use existing framework to test quality of any

produced fuzzy hash algorithms

– Tests processing time, comparison time, resistance to

noise, calculate DET curves, false positive rates, false

negative rates, etc.

19

Research Question 4

• How does digital forensics (Big Data analysis and

intrusion detection) benefit from utilizing

constrained edit distance approximate search and

similarity-preserving hash functions?

20

RQ4 Methodology

• Results from first three RQs will partially answer

this.

• Interview digital forensic analysts.

• Test algorithms using the Hansken Digital

Forensics as a Service system once available for

testing.

21

Conclusion

• Improved accuracy of approximate string matching

algorithms for Big Data analysis and Intrusion

Detection.

• Improved overall quality of fuzzy hashing (data

reduction) algorithms for Big Data analysis.

• Current Projects:

– Develop paper for new CED algorithm

– Interview digital forensic analysts

– Work with Fuzzy Hash Algorithms

