Approximate Search and
Data Reduction Algorithms

Research Questions

Kyle Porter
NTNU Gjavik

>
(@))
(@)
—
(@)
(=
L=
O
(¢))
-
©
(=
(g0}
()
O
=
o
(&
(Vp)
—
(@)
>
et
n
—
(D)
=
(=
=
=
K
(@))
(D)
3
i
o
Z




E Outline of Presentation

NTNU

e [ntroduction:
— Problems
— General Goals

* Research Questions
— Brief theoretical/practical background
— Methodological approach

« Conclusion



B What'’s the Problem?

« There is too much data to process

— Been known since 2004 that basic string processing
algorithms are insufficient.

— Backlogs of digital evidence awaiting analysis has real
world consequences.
It is difficult to defend against the variety of
network attacks.

— Current approximate matching technigues produce too
many false positives.

— Knowledgeable attackers can generally bypass IDS




« Improve accuracy of approximate search
techniques
— Return more reliable approximate search results

« Build on and improve data reduction techniques.

— Have a competent method of analyzing data without
needing close examination.

— Improvements in speed, memory consumption, accuracy
are all welcome.
* Primary development for Big Data analysis and
IDS.




E Research Question 1

NTNU

« How can we implement constrained edit
operations into approximate string matching in an
efficient way supported by theory, and how can we
extend existing algorithms to support constrained
edit distance?




RQ1 Background

e Approximate string matching problem:

— find pattern p in text T such that p and some substring X
of T approximately resemble each other.

« Reason for large number of inaccuracies is due to
the resemblance metric.
« Levenshtein (edit) distance: minimum number of

Insertions, deletions, substitutions necessary to
transform one string into another.

« The neighborhood of possible matches can be

large.

— E.g. For allowed edit distance of 3, the word “secure”
approximately matches “scurry”.



String Transformation Example

secure 1. Delete the first "e"

W .
scure 2. Substitute "e" for "r"

v
scurr_ 3.Insert"y"

WV
scurry




RQ1: Background

We propose use of constrained edit distance.
— Each edit operation is constrained.
— The distance between strings is measured by the minimum
number of allowed edit operations given the constraints.
E.g. If no insertions allowed, one deletion, and two
substitutions are allowed, then “secure” does not
approximately match “scurry” under the constraints.

The matching neighborhood has been reduced to an
area defined by the constraints.

Motivation: if you have a priori knowledge of expected
errors/obfuscation, then you can obtain more accurate
results.



RQ1: Methodology

* Develop Hypotheses

« State-of-the-art approximate matching algorithms
primarily use two theoretical :

— Dynamic Programming Matrices
 Flexibility with metrics
— Deterministic and Nondeterministic finite automata

 DFA's faster, run in linear time, but have exponential
memory consumption.

 NFA's are often easier to design, far fewer necessary
states, slower since they must be simulated.




E Research Question 1.a

NTNU

 How can we increase the efficiency of any
approximate string matching algorithms we create
by utilizing existing techniques?



O] R

NTNU

Q l1l.a Methodology

Bit-parallelism
— Simulate nondeterministic finite automata

— Test all possible edit operations of each pattern character
In parallel.

Filtering
— SKkip text
Dynamic Programming speedups.



E Research Question 2

NTNU

 How could constrained approximate search be
effectively realized in various kinds of hardware?



B RQ2: Methodology

NTNU

« Multi-pattern search algorithms have been
Implemented into specialized hardware (ASIC,
FPGA, GPU) with very good results.

« Actual implementation into hardware will likely a
require a partner.

 Item of interest is bit-splitting implementation.
— Far more scalable methodology (w.r.t memory)
— Can be applied to general state machines



Testing Algorithms

« For any algorithm we create:

— Perform an average and worse case time and memory
complexity analysis.

— Perform tests with different character sets, edit
constraints, pattern lengths, and text corpora.

— Compare results with state-of-the-art.
« Important data:
— Accuracy

— Time consumption
— Memory Consumption




@ Research Question 3

NTNU

« How can we reduce the size of data processed by
these research algorithms and preserve the
similarity between the data objects at the same

time?




O] R

NTNU

Q3: Background

Similarity-preserving hash functions, or fuzzy
hashes.

Similar in use to cryptographic hashes, but no
avalanche effect.

— For similar inputs m and n into the fuzzy hash function,

the output x and y will also be very similar.

Goals:

— ldentify that two digital artifacts resemble each other

— Embedded object detection

— Detect traces of known artifact

— Detect if two artifacts share a common object.



RQ3 Background

* Output of a fuzzy hash is called a sketch.
— This is a feature vector.

« Comparisons of sketches typically compare each
feature, and return a binary yes/no match result.

« Hamming distance or Levenshtein distance often
used for determining similarity.

« Levels of abstraction:
— Byte-wise
— Syntactic
— Semantic




O] R

NTNU

Q3 Methodology

Study the existing methodology and look for
potential areas of improvement:

— Context triggering piecewise hashing and rolling hashes.
— Use of Shannon Entropy

Look for practical non-cryptographic hash
functions, as well as other potential
methodologies.

Use existing framework to test quality of any
produced fuzzy hash algorithms

— Tests processing time, comparison time, resistance to
noise, calculate DET curves, false positive rates, false
negative rates, etc.



E Research Question 4

NTNU

« How does digital forensics (Big Data analysis and
Intrusion detection) benefit from utilizing
constrained edit distance approximate search and

similarity-preserving hash functions?




E RQ4 Methodology

NTNU

* Results from first three RQs will partially answer
this.

 Interview digital forensic analysts.

« Test algorithms using the Hansken Digital
Forensics as a Service system once available for

testing.




B Conclusion

NTNU

* Improved accuracy of approximate string matching
algorithms for Big Data analysis and Intrusion
Detection.

« Improved overall quality of fuzzy hashing (data
reduction) algorithms for Big Data analysis.

« Current Projects:
— Develop paper for new CED algorithm
— Interview digital forensic analysts
— Work with Fuzzy Hash Algorithms



