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This talk models ICT systems as complex adaptive systems, discusses extreme 
behavior in these systems, argues why risk analysis will not reliably predict rare 
extreme behavior, and explains why we need to develop and operate antifragile 
systems.

OVERVIEW
➤ Extreme behavior in information and communications technology (ICT) systems 
➤ Limits of predictive risk analysis 
➤ Complexity is the enemy 
➤ From fragile to antifragile systems 
➤ Design and operational principles  
➤ Antifragile microservice systems
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EXTREME BEHAVIOR IN 
ICT SYSTEMS
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We first model ICT systems as complex adaptive systems to understand why 
stakeholders are surprised by extreme behavior with intolerable consequences.  



COMPLEX ADAPTIVE SYSTEM
➤ Man-made or natural system 
➤ Consists of many entities that interact in involved ways 
➤ Entities adapt to each other and the environment 
➤ Adaption allows system to withstand perturbations
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There is no single formalism that captures all properties of a complex adaptive 
system. Complex systems are often represented by graphs. While graphs can 
display the communication paths or the dependencies between different parts of a 
system, they cannot fully represent the emergent behavior caused by the 
interacting processes in the system. 

EXAMPLES OF COMPLEX ADAPTIVE SYSTEMS
➤ The world-wide economic system 
➤ National political systems 
➤ Transportation systems 
➤ Immune systems 
➤ The Internet 
➤ Beehives 
➤ Anthills 
➤ Brains 
➤ ICT systems
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We’ll concentrate on ICT systems in this  lecture series.

COMPLEX ADAPTIVE ICT SYSTEMS
➤ A complex adaptive ICT system consists of 

➤ stakeholders 
➤ technologies 
➤ threats agents 
➤ policies 

➤ The complexity is mostly due to: 
➤ interactions between stakeholders and the networked computer system 
➤ communication between computers in the network
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There is no single accepted measure of a system’s complexity. A complex adaptive 
ICT system must be modeled in different ways depending on the properties being 
studied. Here, we develop a simple model to better understand why there is 
extreme behavior in complex adaptive ICT systems. 



EXAMPLES OF COMPLEX ICT SYSTEMS
➤ Cloud computing infrastructures 
➤ Telecom infrastructures 
➤ Online social networks 
➤ Banking systems 
➤ Power grids
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EXAMPLES OF STAKEHOLDERS
➤ Examples of stakeholders with interest in an ICT system are  

➤ Software architects and developers 
➤ System owners, operators, and users 
➤ Governmental supervisory entities
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Stakeholders contribute to the complexity of a system by introducing, perhaps, 
conflicting requirements and regulations. Some of these stakeholders may even 
encourage risky behavior to reach certain goals. There is also a tendency among 
stakeholders to withhold information about design flaws and bad management of 
systems. This risk hiding leads to overconfidence and cause a slow “drift into 
failure” with intolerable consequences.  

EXAMPLES OF THREATS AGENTS
➤ Benevolent users and operators making security related mistakes 
➤ Insider attacks from malicious system operators 
➤ Outsider attacks from hackers exploiting software bugs or design flaws 
➤ Hardware failures
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Threat agents trick benevolent stakeholders and/or exploit vulnerabilities in a 
computer-based system to misuse protected assets.



COMPLEX ICT SYSTEM

Threats

Environment
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PoliciesObserve that the stakeholders are part of the system
In this talk, a complex adaptive ICT system consists of stakeholders, technologies, 
threats, and policies.

NEVER-ENDING CHANGE
➤ A complex adaptive ICT system’s architecture, functionality, technology, environment, and regulatory context change over time 
➤ Complex ICT systems never reach a final form 
➤ They continue to adapt to satisfy the changing needs of stakeholders and to protect against changing threats 
➤ A complex ICT system in “equilibrium” is a dead system
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Constant change is an inherent property of complex adaptive ICT systems.

FEEDBACK LOOPS
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Internal or external action System reactsSystem changes Complex adaptive systems contain feedback loops. A feedback loop is a series of 
interacting processes that together result in a system adapting to the effect of its 
previous behavior. Feedback loops are what make complex systems adaptive. The 
loops create emergent global patterns or behaviors. While the concept of feedback 
loops is highly useful to explain adaption and extreme behavior, it is usually very 
hard to pinpoint all feedback loops in a real system.



TYPES OF FEEDBACK LOOPS
➤ A feedback loop is a series of interacting processes, which cause a system to adapt its behavior based on previous behavior 
➤  It is the feedback loops that make a complex system adaptive 
➤ Positive feedback loops propagate local events into global behavior 
➤ Negative feedback loops dampen local events, preventing changes to global behavior

13

Positive feedback loops cause events to initiate more events (e.g., people buy a 
book because other people bought it). In particular, positive feedback loops 
amplify a complex system’s parameter values and makes the system very sensitive 
to small changes in the initial conditions. In fact, changes in parameter values can 
make a system transit from one global pattern to another. However, a global 
pattern tend to be stable over a range of parameter values.  

EXAMPLE: MALWARE EPIDEMIC

Number of 
 malware 
instances

Deaths BirthsPositive  feedback  loopNegative  feedback  loop
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The figure depicts a simple model of an infectious malware epidemic that involves 
a positive feedback loop of increased births and a negative loop of increased 
deaths. Without deaths, the population size will increase exponentially. In other 
words, negative feedback is needed to keep the positive feedback under control.

EXAMPLE: FEEDBACK IN POWER GRID

Positive feedback loop
Critical perturbation

➤ Feedback loop escalates the negative effect of local failure 
➤ Local failure causes systemic failure
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Examples of cascading events caused by positive feedback are blackouts in power 
grids, communication failure in mobile phone systems due to excessive signaling 
traffic, and “traffic jams” in computer networks.



POWER GRID IN EUROPE
➤ To allow for the transfer of a ship, one power line had to be temporarily disconnected in Northern Germany in November 2006 
➤ The event triggered an overload-related cascading effect and many power lines went out of operation  
➤ As a consequence, there were blackouts all over Europe (see black areas in picture)
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D. Helbing, “Systemic Risks in Society and Economics,” SFI Working Paper 
2009-12-044, 2009;  
www.santafe.edu/media/workingpapers/09-12-044.pdf. 
	 	

Blackout
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Even to experts, the pattern of outages is surprising and very hard to foresee.

STOCHASTIC BEHAVIOR
➤ The behavior of a complex ICT system is modeled as a sequence of events that affect a group of stakeholders both positively and negatively 
➤ We consider the financial impact of all possible events during a particular time period of five to ten years 
➤ The high complexity makes it necessary to represent the impact by a stochastic variable that changes with time
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For simplicity, we assume that the impact of events can be represented by financial 
gains or losses.



PROBABILITY DISTRIBUTION OF IMPACTS
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Impactnegative positive
Since we are interested in studying events with negative impact, we’ll concentrate 
on the left half of the probability distribution. 

PROPERTIES OF IMPACT DISTRIBUTION
➤ Most of us are familiar with  thin-tailed probability distributions with fixed expectation and well-defined variance 
➤ The impact distribution for real-world ICT systems are likely to have 

➤ time-varying expectation 
➤ thick (fat) left tail 
➤ infinite variance

20

When the behavior of a complex adaptive system changes over time, the 
probability distribution of events also changes. If the system has a fat tail 
distribution, it is not possible to estimate the mean from samples since you need a 
huge number of samples. (The mean is determined by outliers that are very rare 
and unlikely to be in your samples.)

THICK LEFT TAIL

21
Impact

Power-law probability distributions with fat tails can be used to model (some 
aspects of) a complex adaptive system’s behavior. The fat tails make it impossible 
to make statements about a system’s extreme behavior from small samples.



PROPERTIES OF OUTLIERS
➤ Outliers are often caused by 

➤ positive feedback loops that propagate local failures into systemic failures 
➤ attackers exploiting software bugs and design flaws 
➤ single point of failures that take down whole systems 

➤ Observation Since outliers are unlikely to be in a system’s history, the past will not help us foresee outliers or calculate their probabilities
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We assume that single points of failures are removed from the systems we 
concentrate on positive feedback loops

EXTREME BEHAVIOR—LHR EVENT
➤ A large impact, hard-to-predict, and rare (LHR) event is an outlier in the left tail of the probability distribution 
➤ While “normal” events occur multiple times during a period of say ten years, LHR events are non-recurrent, that is, they occur at most once during the period
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The figure illustrates the difference in probability and impact between non-recurrent 
LHR incidents and normal recurrent incidents.



 LHR INCIDENT IN NORWEGIAN PAYMENT SERVICES
➤ In August 2001, computer systems providing services to about one million Norwegian bank customers ceased to function 
➤ It took 7 days to get the services back in normal operation 
➤ Multiple points of failure—causing transaction data on 288 disks to become inaccessible
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EDB Fellesdata AS ran the computer services of about half of Norway's banks. On 
Thursday 2 Aug 2001, the company installed 288 new disks in its Hitachi storage. 
Then, instead of initializing the new disks, EDB initialized 288 existing disks, 
crashing the whole data storage system. According to news reports, about half of 
all Norwegian bank customers were denied access to online banks and ATMs by 
this LHR event. https://news.hitb.org/node/3129

LHR EVENT IN A LARGE NORWEGIAN BANK 
➤ In March 2007, malware infected 11 000 PCs and 1 000 servers belonging to a Norwegian bank 
➤ More than two weeks were needed to completely remove the malware 
➤ An error in the anti-virus software and a vulnerability in the OS led to this LHR event
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Viking.gt spread because there was a problem with the anti-virus software running 
on the bank’s computers, and because the malware was able to exploit a 
vulnerability in the computers’ OS. During the attack several branch offices were 
unable to assist their customers. About 50 employees and 150 external 
consultants were involved in the clean-up. It’s estimated that this LHR event cost 
the bank more than 110 million NOK. 

www.idg.no/bransje/bransjenyheter/article45271.ece

www.dagensit.no/arkiv/article1339181.ece?WT.svl=article_title&jgo=

www.dagensit.no/arkiv/article1339199.ece?WT.svl=article_title&jgo=

LHR EVENT: CONFICKER
➤ It is estimated that the Conficker worm has infected 12 million PCs world wide 
➤ Conficker severely affected hospitals (Helse Vest) and the police in Norway   

➤ the Norwegian police spent 30–50 million NOK to “clean up” after Conficker attacked operational control centres and the system for passport control 
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The Conficker computer worm infected millions of government, business, and 
personal computers in more than 190 countries, threatening to overpower the 
computer networks that controlled health care, air traffic, and banking systems 
over the course of several weeks.

www.digi.no/817553/dataorm-kostet-politiet-30-50-millioner-

kroner

www.nrk.no/nyheter/distrikt/rogaland/1.6428721



MASSIVE RANSOMEWARE ATTACK FROM NORTH KOREA
➤ Self-replicating ransomware infected 200,000 systems in more than 150 countries on May 12th, 2017 
➤ First attack to use a stolen cyberweapon developed by NSA 

➤ Many targets in Russia, Ukraine, India, and Taiwan 
➤ 48 hospitals in Britain were affected by the outbreak 
➤ Renault had to stop production in some factories 
➤ Telefónica, a Spanish telecommunications firm was affected 
➤ FedEx
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Ransomware is malicious software that encrypts a computer’s files and then 
demands payment to unlock them. Cybercriminals have discovered that 
ransomware is the most effective way to make money in the shortest amount of 
time. Bitcoin has given the cybercriminals an easy and anonymous way to get their 
profits, and it is much harder to track than credit cards or wire transfers.

The map shows tens of thousands of Windows computers that were taken hostage 
by a variant of the WannaCry ransomware. This worm exploited a vulnerability in 
Microsoft servers first discovered by NSA. Europe was more affected than the 
United States because a British cybersecurity researcher inadvertently activated a 
kill switch when he bought a domain used by the attackers. The domain was hard-
coded into the worm.

https://www.nytimes.com/interactive/2017/05/12/world/europe/wannacry-
ransomware-map.html

SUMMARY OF DISCUSSION ON EXTREME BEHAVIOR
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Complex ICT systems are vulnerable to LHR events

To summarize, a typical complex adaptive ICT system is vulnerable to LHR events 
because single points of failure (SPFs) can take down the whole system and 
because local failure propagation can cause extreme global behavior with, 
perhaps, intolerable impact. The number or SPFs and the interplay between 
positive and negative feedback loops determine the frequency and impact of LHR 
events.



FURTHER READING
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T E C H N I C A L I N C E RTO : L E C T U R E S N OT E S O N P R O B A B I L I TY, VO L 1

SILENT RISK

NASSIM NICHOLAS TALEB

In which is provided a mathematical parallel version
of the author’s Incerto, with derivations, examples,

theorems, & heuristics.
(This Draft Is For Error Detection)

The two leftmost books are quite easy to read, while a solid math background is 
needed to understand the rightmost book. Nassim N. Taleb introduces and 
analyses LHR events (also called black and grey swans), while  Dmitry Chernov 
and Didier Sornette provide 45 case studies to document how concealment of risk 
leads to LHR events.

LIMITS OF RISK 
ANALYSIS 

(OR SHIT HAPPENS IN THE FOURTH QUADRANT)
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This section discusses the limits of classical predictive risk analysis. 

RISK IN COMPLEX ADAPTIVE ICT SYSTEMS
➤ We talk about risk when we do not know what will happen 
➤ Risk means that more things can happen that will happen
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RISK ANALYSIS
➤ A classical risk analysis predicts incidents during a future time period by 
1. describing all possible incidents, 
2. estimating the probabilities that they will actually occur, and 
3. determining the incidents’ impact on a group of stakeholders
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This type of risk analysis is highly problematic when it is applied to complex 
adaptive ICT systems. First, risk analysts are not able to describe all possible LHR 
incidents in such systems. Second, analysts are not able to estimate the 
probabilities of identified LHR incidents.

CLASSICAL RISK MATRIX
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ProbabilityImpact highmediumlowhighmediumlowIs an LHR  
incident a  
medium  
risk?

A possible LHR event can be that a national banking system goes down for a week 
(see previous example). Since such an event has a low probability and a high 
impact, it is a medium risk according to the risk matrix. Obviously, a week of 
downtime is intolerable in any advanced society. Something is clearly wrong with 
this risk matrix.

LIMITS OF CLASSICAL RISK ANALYSIS
➤ A classical risk matrix is created with the implicit assumption that stochastic events in a system have a probability distribution with a thin left tail 

➤ LHR incidents (outliers) are ignored 

➤ Observation Classical risk analysis severely underestimate the risk associated with complex adaptive ICT systems because LHR incidents dominate the impact on stakeholders
36

The observation that classical risk analysis severely underestimates the risk 
associated with today’s ICT systems partly explains why we continue to build 
systems with fragility to LHR events. In fact, current risk analyses of ICT systems 
lead stakeholders to take more risk than they should because the stakeholders are 
confident that the risk is manageable.



TALEB’S FOUR QUADRANTS

Only local impact Global impact

Thin left tail Only limited local impact Global impact possible but tolerable
Thick left tail

Large local impact possible, good risk management needed Intolerable global 
impact is inevitable 
PREDICTIVE RISK 
ANALYSIS DOES 

NOT WORK
37

1 23 4Impact

Distribution

Following Taleb, we divide complex adaptive ICT systems into four categories, or 
quadrants, depending on incurred financial costs and distribution of events.

We then determine the quadrants’ robustness to LHR incidents. Note that risk 
management works in the first three quadrants, but not in the fourth.

AVOID THE 4TH QUADRANT
➤ We want to create systems in the first quadrant but may end up in the third quadrant 
➤ The important thing is to avoid the fourth quadrant with its intolerable LHR incidents
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We need to develop and operate complex adaptive ICT 
systems that limit the impact of unforeseen incidents

https://www.edge.org/conversation/nassim_nicholas_taleb-the-

fourth-quadrant-a-map-of-the-limits-of-statistics

FURTHER READING
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Sidney Dekker explains why hidden risk in complex systems will eventually lead to 
serious failures. Duncan J. Watts explains why we believe we know much more 
about (economic) systems and the world in general than we actually do.



COMPLEXITY IS THE 
ENEMY
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Subjective view

This section discusses the consequences of our inability to understand extreme 
behavior in complex adaptive systems.

COGNITIVE COMPLEXITY
➤ Cognitive complexity is the mental effort needed by a single individual, or a team, to understand a given functionality of a system 
➤ Cognitive complexity is subjective in the sense that it depends on an individual’s energy, mood, skill set, and ability to concentrate 
➤ Claim Large cognitive complexity seriously affects our ability to analyze incidents in complex systems, leading to oversimplified explanations and downright wrong conclusions 
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FLAWED INVESTIGATIONS
➤ Investigators of incidents in complex systems tend to 

➤ ignore that many scenarios lead to the same incident 
➤ focus on explanations where the incident is the last in an ordered (linear) sequence of events 
➤ look only for well-defined root causes 
➤ view technical systems as reliable and humans as unreliable 

➤ An investigation often concludes that an incident was due to “human error,” but says nothing about why individuals acted the way they did
42



HINDSIGHT BIAS
➤ The hindsight bias or the I knew-it-all-along effect is the tendency, after an incident occurred to 

➤ conclude that it was foreseeable, 
➤ find a single initiating event, 
➤ ignore all but one simple explanation, and 
➤ blame one or a few individuals for the incident
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DECISION MAKING: LOCAL RATIONALITY
➤ Failures occur when the ability to understand and handle complexity breaks down 
➤ While there is a view that technical systems are reliable and humans are unreliable, technical systems fail on a regular basis 

➤ algorithms are brittle and fail on unanticipated inputs 
➤ hardware fail all the time in large systems 

➤ Observation Humans are reliable in general but have to make decisions with limited information and understanding when the complexity is high
45

Local rationality is the idea that during the events leading up to accidents, people 
are acting in a way that makes sense to them at the time. All of their knowledge, 
training, experience, organizational culture, and input from the environment 
combine to influence the decisions people make and the actions they take.



“HUMAN ERROR” IS JUST A CONVENIENT LABEL
➤ Investigator of incidents in complex systems usually blame 

➤ the technical system, 
➤ management, or 
➤ the operators 

➤ While it is both most convenient and least expensive to blame operators, it often hides the real reasons for incidents, namely 
➤ many strong dependencies leading to high cognitive complexity
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THE ENEMY
➤ The enemy is not unreliable humans but large complexity that makes it too hard for humans to understand a system and make good decisions 
➤ Observation Blaming a small group of operators for a serious incident, without really understanding why they acted the way they did, prevents us from learning how to design and operate systems 

➤ erroneous actions and assessment are symptoms, not causes
47

FURTHER READING
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This book provides a critique of the way we analyze accidents and suggest a better 
way forward. 



FROM FRAGILE TO ANTI-
FRAGILE SYSTEMS
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Here, we discuss how to build ICT systems that do not depend on highly accurate 
risk analyses to operate as desired.

FRAGILE, ROBUST, AND ANTIFRAGILE SYSTEMS
➤ A property of a complex adaptive system is 

➤ fragile if it is easily damaged by internal or external perturbations, 
➤ robust if it can withstand perturbations (up to a point), and 
➤ antifragile if the system learns from incidents how to make the property increasingly robust over time
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As an example, a system can be antifragile to targeted attacks, malware, 
downtime, scaling, real-time response, and fraud.

TYPES OF SYSTEMS
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The human immune system is a prime example of an antifragile system. Another 
example is muscles. It could also be argued that the brain is antifragile.



FRAGILE

Handle with care
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If the content of the box is fragile, then the box must be handled with care.

ROBUST
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If the context of the box is robust, then we need not write anything on the box 
because we do not care how it is handled (up to a point).

ANTIFRAGILE

Please mishandle
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If the content of the box is anti-fragile, then stressors will make it stronger. In fact, 
the content needs stressor to maintain its antifragility.



FRAGILE SYSTEMS
➤ When a fragile system fails, its fragility is not blamed; instead, bad risk analysis is said to be the cause 
➤ Observation The real problem is not bad risk analysis, but that the fragile system was created in the first place

55

ROBUST SYSTEMS
➤ We need to create systems that are much less dependent on our very limited ability to predict LHR incidents 
➤ Observation It is not enough to create a system that is robust to known incidents because it will become fragile over time as the system and its environment change
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ANTIFRAGILE ICT SYSTEMS
➤ Antifragile systems fail locally with limited impact and prevent failure propagation. The systems 
1. avoid silent failures, 
2. detect failures early, and 
3. learn from failures how to better handle future incidents
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No antifragile system can scale forever because the growing complexity will 
introduce unwanted positive feedback loops that increase the fragility of the 
system, The increase in hidden risk will eventually materialize as an intolerable 
incident.



ANTIFRAGILITY TO CLASSES OF INCIDENTS
➤ No ICT system is antifragile to all possible types of incidents 
➤ Our approach is to develop and operate systems that are antifragile to particular classes of incidents 
➤ These classes can be defined in different ways by focusing on 

➤ results of incidents, e.g., downtime 
➤ type of attacks, e.g., malware 
➤ type of threats, e.g., Advanced Persistent Threats

58Fragile Robust Antifragile
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Fragility, robustness, and anti-fragility are degrees on a spectrum. A system is only 
robust or anti-fragile up to a point. A fragile agent is one who must control the 
environment to maintain its normal condition. A slight shift in the environment can 
result in devastating consequences. In contrast, the robust agent maintains its 
normal condition in response to changes in the environment. But an anti-fragile 
agent always maintains or improves its current condition as the environment 
changes, without any preordained sense of normality.
http://blogs.lse.ac.uk/lsereviewofbooks/2013/02/23/book-

review-antifragile-how-to-live-in-a-world-we-dont-understand/

FURTHER READING
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Download Kjell’s free e-book from 
link.springer.com/book/10.1007/978-3-319-30070-2

To fully understand the concept of antifragility, you should to read the book by 
Nassim N. Taleb. The book by Kjell Hole can also be downloaded from https://
againstfragile.com



DESIGN AND OPERATIONAL 
PRINCIPLES 
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This section introduces design and operational principles for antifragile systems.

CORE PRINCIPLES
➤ To design and operate antifragile ICT systems, we first study 

➤ four design principles and 
➤ two operational principles 

➤ The six principles are not new, but together they outline a novel way to develop and operate ICT systems 
➤ Observation The principles’ common goal is to mitigate tail risk, that is, to ensure that the impact PDF has a thin left tail
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In computer science, design principles are often called design patterns

PRINCIPLES AND ANTI-PRINCIPLES

63

Principles Anti-principles

Design

separate processes deployment monolithisolatable processes inseparablediversity uniformityredundancy uniqueness
Operational

fail fast fail slowskin in the game no skin in the game
The table contains six principles and the corresponding anti-principles. To 
understand the importance of a principle, it is useful to study the anti-principle. In 
our case, the anti-principles can be used to detect fragility in systems.



DESIGN PRINCIPLES
➤ Separate processes A system must consist of separate processes running on multiple physical machines 

➤ first step to avoid failure propagation 
➤ Isolatable processes A process must be isolated from other processes when it develops problems 

➤ second step to avoid failure propagation
64
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ProcessUnit Process can be  isolated by taking down links
Virtual machines are often used to implement processes. Links that can be 
disconnected and reconnected without creating problems for the rest of the 
system are sometimes referred to as weak links.

MORE DESIGN PRINCIPLES
➤ Redundancy Use multiple identical copies of processes 

➤ limits the impact of process failure 
➤ Diversity use differently designed and implemented processes 

➤ makes it less likely that multiple processes fail at the same time
66



DISTRIBUTED SYSTEMS

67

Lean Redundant Redundant & diverse Processes with red, blue, and gray colors in the lean and redundant systems have 
different functionality. Processes with different shades of the same color in the 
redundant & diverse system have different design and/or implementation, but the 
same functionality.

FAIL FAST OPERATIONAL PRINCIPLE
➤ It is necessary to discover failures early to limit their consequences and learn how to avoid the same, or similar, failures in the future 

➤ remember that we are not able to predict all future incidents
68

What is fragile should break early, while it’s still small [Nassim Taleb, Black Swan]. 
Nothing should ever become too big to fail.

REAL-TIME MONITORING
➤ Observation Accurate real-time monitoring of behavior at different system levels is crucial to detect problems and learn how to improve the system 

➤ rather than waiting for failures to occur, Netflix injects artificial failures into their production system to speed up the learning process
69



LEARNING FROM INJECTED FAILURES
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SKIN IN THE GAME
➤ A person with “skin in the game” has something to lose like ownership, money, property, or respect 
➤ Major stakeholders that benefit from an ICT system should share at least some of the downside when the system misbehaves
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SOFTWARE DEVELOPERS WITH SKIN IN THE GAME
➤ A team of software developers creating a system should be responsible for mitigating problems with their own code and make sure that the system runs without serious hiccups 
➤ Developer teams should have operational responsibilities not to punish them when things go wrong, but to make sure the teams learn from their own mistakes how to maintain and improve the system

72



FURTHER READING
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Making reliable
distributed systems
in the presence of

sodware errors

Final version (with corrections) — last update 20 November 2003

Joe Armstrong

A Dissertation submitted to
the Royal Institute of Technology

in partial fulfilment of the requirements for
the degree of Doctor of Technology
The Royal Institute of Technology

Stockholm, Sweden

December 2003

Department of Microelectronics and Information Technology

Reactive Programming 

Reactive Systems

By Jonas Bonér and Viktor Klang, Lightbend Inc.

Landing on a set of simple Reactive design principles in a  

sea of constant confusion and overloaded expectations

versus

ANTIFRAGILE 
MICROSERVICE 

SYSTEMS
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NETFLIX
➤ Netflix has developed a distributed system of microservices in the Amazon Web Services (AWS) cloud for streaming movies and TV series 
➤ We study how Netflix has utilized the six design and operational principles to create a system that is antifragile to downtime
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MICROSERVICES
➤ A microservice does one thing well 
➤ Manage its own data 
➤ Runs as a separate process 
➤ Fast shutdown and startup times 
➤ A single developer can quite easily understand the functionality of a service 
➤ Services can be changed independently of each other 

➤ can be written in different languages
76

Microservices avoids much of the maintenance problems associated with tightly 
integrated legacy systems because it easy to update individual services, including 
changing the technologies they are based on.

CLOUD
➤ A cloud infrastructure is divided into regions situated in different parts of the world 
➤ Each region consists of multiple zones or data centers 
➤ Each data center has a large number of servers and storage units

77

MODULARITY VIA MICROSERVICES
➤ Virtual machines run well-defined and self-contained services 
➤ A microservice solution may have many hundred services

78



ISOLATION WITH CIRCUIT BREAKERS

➤ Any service is called via a circuit breaker 
➤ A circuit opens when it detects problems with a service 
➤ The circuit breaker provides a default response 
➤ It closes when the problem is fixed 

➤ has logic to test if the problem is gone
79

GENERIC CIRCUIT BREAKER

80

REDUNDANCY PROVIDED BY THE CLOUD
➤ The cloud supports redundancy at the virtual machine (VM), zone, and region layers

81



VM REDUNDANCY (1)

Timeout

dependence

dependent 
service

Fig. from Netflix

Redundant services with timeout and failover
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When a dependency times out, another is queried. Failure of an instance is 
often due to power outage in the hosting rack, a disk failure, or a network 
partition that cuts off access.

VM REDUNDANCY (2)

Timeout & 
default 

response

dependent 
service

dependence

Fig. from Netflix

Timeout with fallback default response used when 
all instances are affected
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When there is a software bug or network failure, all instances are affected 
and it is necessary to use a (non-personalized) default response to contain 
the error. A careful analysis is needed to determine the appropriate 
response.

MULTIPLE ZONES
Local 

balancer

Zone A Zone B

dependent 
service

dependencedependence

dependent 
service

Fig. from Netflix
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Netflix uses three zones in each region to limit the consequences of 
firmware failures, certain serious software bugs, power failures, and severe 
network failures. The zones correspond to different data centers.  Note that 
the load balancer is a single point of failure. 



MULTIPLE REGIONS

Local 
balancer

Local 
balancer

DNS
Region W Region E

Fig. from Netflix
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DNS splits traffic load in two halves. To handle infrastructure failures, Netflix 
uses three regions and switch users to a new region when needed. Failures 
of a whole region are caused by configuration issues, bugs in infrastructure 
code, bugs in application code, and failures in load balancer.  
http://techblog.netflix.com/2013/12/active-active-for-
multi-regional.html

DIVERSITY PROVIDED BY THE CLOUD
➤ The cloud supports diversity at the VM layer 
➤ Since a web-scale solution supports users all over the world, there is no good time to take down the system and upgrade its software 
➤ An alternative is to introduce new code by keeping both old and new code running and switch user requests to new code
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SIMPLE CANARY PUSH
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A “canary” is a new version of a service. The stability of a “canary” cannot 
be fully evaluated before it gets a heavy traffic load in the production 
system. A few copies of the “canary” is tested in the production system.



RED/BLACK DEPLOYMENT
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The default instance groupings that Chaos Monkey uses for selection is 
Amazon's Auto Scaling Group (ASG). We use enough copies of new code in 
an ASG to carry the load. Keep the old code to ensure that we can handle 
peak load if there is a problem with the new code.

STANDBY BLUE SYSTEM
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89

➤ Software error in both red and black deployment 
➤ Blue system delivers a minimal solution 
➤ Used when all resent versions of the code fail Several versions of the code may contain a “time bomb” that only goes off 

after a long period. There could also be a problem with the data causing 
several versions of the code to fail. Since the blue system is non-adaptive or 
static, it is easier to scale than the regular code.

FAIL FAST USING MONKEYS
➤ Netflix has created a collection of tools called the Simian 

army to deliberately introduce failures in their production system 
➤ Chaos Monkey disables randomly selected virtual machines 
➤ Chaos Gorilla simulates network partitions and total zone failures 
➤ Chaos Kong simulates region failures

90

To avoid intolerable impact, only introduce failures in 
systems that satisfy the four design principles

Within an ASG, Chaos Monkey will select an instance at random and 
terminate it. The ASG should detect the instance termination and 
automatically bring up a new instance.



LATENCY MONKEY
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Latency Monkey tests what happens when the delay becomes too long
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The shutdown of a low-level dependency can lead to a longer timeout at a 
higher layer, causing a cascading failure. There is no simple answer to this 
multi-level dependency problem, each case must be carefully studied.

SKIN IN THE GAME WITH DEVOPS
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DevOps: combination of development and operations. See http://
en.wikipedia.org/wiki/DevOps

DEVOPS
➤ The DevOps methodology combines software development and IT operations 
➤ DevOps is a response to the interdependence of development and operations 
➤ Breaks down silos of development, quality assurance, and operations 
➤ Software teams develop, run, and update their own code 
➤ DevOps team utilises iterative development with continuous delivery
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DEVOPS FACILITATES ANTIFRAGILITY
➤ Failures occur in a production system traditionally under the control of IT operations 
➤ Software developers must fix the problems because IT operations lacks the needed programming skills 
➤ If software development and IT operations are combined, then it is possible to learn from failures and introduce countermeasures much faster than before
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FURTHER READING
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There exist many books on microservice systems and DevOps. Here are two good 
examples.

SUMMARY
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ANTIFRAGILE SYSTEMS ARE:
➤ Highly distributed systems of isolatable processes with much redundancy and diversity 
➤ They avoid silent failures and fail fast with only local impact 
➤ They learn from small-impact failures how to become more  robust to future incidents
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Antifragile systems are needed because we are very bad 
at predicting rare incidents with huge negative impact

Antifragility is all about continuous improvement. Stakeholders, especially software 
developers and system operators, must continue to improve a system over time to 
make it more robust to a changing environment. The introduction of artificial 
failures and the use if sophisticated system monitoring are crucial to achieve 
antifragility.

RESEARCH QUESTIONS
➤ How do we design antifragile systems from scratch? 

➤ How do we limit a system’s cognitive complexity? 
➤ What are the central design and operational patterns? 
➤ How should we detect anomalies? 
➤ How should we implement antifragile systems? 

➤ Erlang 
➤ Java/Scala & Akka
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Since the concept of antifragile ICT systems is quite new (first discussed around 
2012), there are many open research questions. Today, only a few researchers work 
in this area.

THANKS FOR LISTENING
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