
8/25/16

1

Network Monitoring: Algorithmic
Designs and challenges

Yong Guan

Department of Electrical and Computer Engineering
Associate Director for Research, Information Assurance Center

Iowa State University

August 5, 2016

Challenges in Security Monitoring and
Forensic Analytics

} We need to measure and analyze
network traffic for several purposes
} Usage monitoring:

} Flash Crowds,
} Large File Transfers
} Term-of-service Abuse

} Maintenance:
} Equipment Failures
} Vendor Implementation Errors
} Software Bugs

} Security:
} Online Fraud Activities
} Malware Spreading
} DDoS Attacks

Botnets
Malware
Click Frauds
DDoS
Spam/Phishing
Privacy-violation} Hidden, Low-Profile

} Coordinated
} Geographically-distributed

8/25/16

2

Research Problems

Sketches
Log … …
… … … …

Log … …
… … … …Sketches

Sketches
Log … …
… … … …

Log … …
… … … …Sketches

Process each
packet in a wire

speed

In-memory
sketches capture

traffic status

Error-bounded measurements enable
low profile attack detection

Time-decaying window model is used to detect on-going attacks

Scalable to process network-
wide measurements

Forensics

Our Recent Work

Reversible
Sketches

Coding
Theory

Dynamic
Membership

Query

Time-decaying
Window

Hash Functions:
Bloom Filters
Hash Tables

Super-spreader
Detection

PCA-based Traffic
Anomaly

Duplicated clicks

Traffic Activity
Graph Analysis

Using the low-
rank properties

Low-rank Matrix
Approximation

Persistent clicks

Botnet C&C
Communication

Heavy-Change
Detection

Entropy and Distribution
Property Tests

Linear Algebra for Matrix
Approximation

8/25/16

3

Identifying Significant
Contributors from Aggregated

Flows

} Identifying Significant Contributors from
Aggregated Flows

} Sampling provides a poor detection rate.
} Sampling rate is low if we need to save packets into the disk
} Most malicious packets are missed.
} Offline analysis is not enough.

} Aggregation: Online Solution
} Each packet is aggregated into a small number of flows
} Maintain a summary for each aggregated flow

} Traffic volume
} Number of distinct IP, Port, etc.
} Entropy
} Etc.

} Detect attacks and anomalies from aggregated flows in a real
time

8/25/16

4

Limitations of Aggregate Queries
} Advantages

} In-memory data structures
} Fast update for each packet

} Trigger an alarm in a real time

} Weaknesses

} Difficult to identify the causes of the alarm
} Existing Solutions

} Modular Hashing
} Combinatorial Group Testing

} Random Projection
} Chinese Reminder Theory

Aggregate Queries
} Heavy-Change Detection

} Identify flow(s) or host(s) that cause sudden changes in traffic
volume

} where

8/25/16

5

Framework

C
oordinated Sam

pling

…
P

acket S
tream

Packet
Samples

Fast Sketch
Computation

Aggregate
Queries

Anomalous
Key

Identification

Anomalous
Aggregated

Flows

Anomalous
Keys

Anomalous
Packets

Local Monitor Network Operation Center

Sketches

Each packet is hashed into
multiple rows

Update at Local Monitor

1+log(n/ℓ)

(f i , si)

(f1 , s1)

(f2 , s2)

P
acket S

tream

ℓ

+si +si +si

+si +si +si

+si +si+si

At each row, we update multiple counters to
maintain enough information to recover keys later

8/25/16

6

Update at Local Monitor
} The quotient function x=q() is the division function

} We construct a set of universal hash functions h’j()

} The hash functions hj() maps a flow into a row

} Update the first counter in each row hj(f)

} Update the b-th counter if the b-th bit in its quotient q(f)
is 1

Query at Network Operation Center
} Merges all sketches
} Determine an aggregated flow

is anomalous or not

?SrcIP,
SrcPort,
DstIP,
DstPort,
Protocol

} Our Goal
} Recover a set of flow

keys corresponding the
traffic anomalies

8/25/16

7

Query at Network Operation Center
} We go through each row one by

one
} If the first aggregated flow is

malicious (its change is larger
than the threshold):
} We conclude that there is a heavy-

change flow in this row

} We set b-th bit in its quotient to 1
if the b-th counter is larger than
the threshold

} We recover its key by

x=001000100

y=3

Query at Network Operation Center
} If there is only one malicious

flow in this row, it is easy to
verify that

} Remove false positives by
checking the first counter in
each row for f=φ(x,y)

f=φ(x,y)

(,) ' ()
/ (mod) ' (/) ' (/)

/ (mod)

x y x l y h x
f l l f l h f l h f l

f l l f l

f

ϕ = + ⊕

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⊕ ⊕⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎢ ⎥= +⎣ ⎦

=

g

g

g

8/25/16

8

Comparison with Existing Work

Space Update Time Query Time

Modular
Hashing O(n 1/log log n log log n) O(log n / log log n) O(kn 1/log log n log log n)

Combinatorial
Group Testing O(k log n) O(log n) O(k log n)

Random
Projection O(k) O(1) O(n)

Chinese
Reminder
Theory

O(n 0.5) O(1) O(k2)

Our Fast
Sketch O(k log n/k) O(log n/k) O(k log n/k)

Application 1: Super-spreader
} Each counter is replaced by

Bloom filter (a bit vector)

(SrcIP, DstIP)

(SrcIP, DstIP)

(SrcIP, DstIP)
0

1

0

Three-dimensional Bit Vector

8/25/16

9

Application 2: PCA-based Anomaly Detection

} We maintain a series
of fast sketches.

} Run Principle
Component Analysis
on traffic volumes in a
time window

} Identify anomalous
aggregated flows

} Recover the roots of
the detected traffic
anomalies

Identifying High-Cardinality
Hosts from Network-wide

Traffic Measurements

8/25/16

10

Problem Definition

} High-cardinality hosts (e.g., super-spreaders) are the signs
of several known security problems.

8/25/16 19

Super-
spreaders

DDOS
attack

Spam
emails

Worm
spreading

Botnet
takeover

Challenges

8/25/16 20

Network-wide traffic view

Duplicate removing

Mergeable measurements

Super-spreader identification

Space & time limitation

8/25/16

11

Problem Formulation

} We have k routers. For ith router i = 1, …, k, there is a
packet stream

(si1,di1), (si2,di2), …, (sit,dit), …

where sit, dit are the source and destination of the packet.
} For a source x, the set of distinct destinations of x in ith

stream at time t is .
} The destination cardinality of x in all k streams is

8/25/16 21

Problem Formulation (cont.)

} Let denote the set of distinct packets at ith router at
time t with window ,

} Let denote the number of distinct packets in k
streams,

8/25/16 22

8/25/16

12

Our Idea - Sketch Design

Group
Testing

Cardinali
ty

Estimatio
n

Error-
correctin
g Code

Our
Sketch

8/25/16 23

• Sketches
– Give (ε,δ)-approximations on cardinalities of super-

spreaders in each data stream with using space and time.
– Mergeable: merging two sketches equals to merging two

data streams.
– Reversible: recover the identity of the super-spreaders

from the sketch.

Group Testing

} False coin problem
} N coins with 1 false (weighing less than a real coin)
} Using a balance scale, we can separate the coins in half, compare

the two halves and choose the half with less weight.

} Repeat the above step until there is one coin remaining which is
the false one.

} Need O(logN) weighing.

8/25/16 24

8/25/16

13

Group Testing in Our Sketch

} Randomly map all the hosts into multiple groups
} Each group = 1 super-spreader + n small-cardinality hosts

} For each group
} Each of its hosts is randomly mapped to multiple subgroups

according to the host’s ID.
} Maintain cardinality for each subgroup.
} The subgroups with cardinality larger than the threshold can

identify the super-spreader’s ID.

8/25/16 25

Sketch Design
} Cardinality Estimation

} For each subgroup, we use an existing optimal cardinality estimation
algorithm to maintain the cardinality of the subgroup.

} Supports merging of multiple data structures by MAX operation.
} Brings in error/noise: subgroups not having a super-spreader may be

considered to have one.

} Error-correcting Code
} Use error-correcting code, e.g. Hamming code, to encode each host’s

ID: q àw(q).
} Encoded IDs are used to map hosts into subgroups.
} Decoding w(q) helps us to remove the cardinality estimation errors

and get the correct q.

8/25/16 26

8/25/16

14

Data Structure & Algorithm

8/25/16 27

L layers(groups).

Te
xtᶯ subgroups for group testing

+ 1 subgroup for FP removing

Tex
t

Counters used in
cardinality estimation

for each subgroup.

1. Each packet is independently hashed
into multiple groups according to the
source s.
Hash functions are based on the quotient
and remainder of s divided by L .

2. In each group, (s,d) is mapped into multiple
subgroups according to the 1-bit of quotient q
of s divided by L .
Error-correcting code is used to encode q to
w(q) before mapping.

3. Each subgroup where (s,d) is mapped to
will update its cardinality using the
destination d.

Algorithm – Recover Super-spreaders from
Sketch

8/25/16 28

1 0 0 0 1 0 0 0 1 0

0

0

0

1

0

1

0

1

0

1 1 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0

1 1 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0

Bt[*,*]

W(y) = 000001010

try each of the hash functions on
decoded y

a = 1000. Layer number is
also used to recover the
super-spreader’s ID.

y = 0010. y is the quotient of
the super-spreader in this
group with high probability.

8th layer

decoding

Text

Layers
(groups)

Te
xtSubgroups

Text
super-spreader

candidate x

Create a 2D binary matrix from C[*,*,*]: test each subgroup C[a,b,*]
in each layer/group to see if its cardinality is larger than the
threshold. If yes, set B[a,b]=1, else set B[a.b]=0.

8/25/16

15

Algorithm –False Positives Filtering

8/25/16 29

1 0 0 0 1 0 0 0 1 0

0

0

0

1

0

1

0

1

0

1 1 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0

1 1 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0

Bt[*,*]

Candidate
x

hj(x)

On each candidate x, try each
hash function to see if the
group it is mapped to has a
super-spreader.
If half of the groups do have,
then x is reported as a super-
spreader.

Performance

8/25/16 30

8/25/16

16

Small Group Discussions
} Balancing accountability and PRIVACY
} Working with big, sometimes incomplete data

} Mobile and wearable platform forensics
} Proving the relevance of evidence and human/platform that

generated them.

8/25/16

17

Thanks
Q&A

Yong Guan
guan@iastate.edu

Iowa State University

