

0	verview of Network Attack Attribution	
÷	Goal:	
	 Traceback and identification of network attackers. 	
•	Network Attack Attribution problems:	
	* IP Trace-back	
	 The problem is to trace the path (i.e., a sequence of routers) of a datagram traverse through the Internet. 	
	 Three classes of schemes: 	
	 Hash-based schemes Probabilistic Marking Schemes 	
	 Algebraic Packet Marking Schemes 	
	 Attack Attribution (or attack traceback) 	
	 Stepping Stone Attack Attribution 	
	The problem is to discover the real origin of the attackers	
	Stepping stones can be compromised hosts, web proxy services, anonymous communication services, etc.	
	 DDoS 	
	The problem is to discover the master computer	
	In DDoS, a master computer controls a number of zombie computers.	

IOWA STATE UNIVERSITY				
Algebraic Packet Marking				
÷	Ref	ierence.		
	*	[SPIE] D. Dean, An Algebraic Approach to IP Traceback.		
¢	Ass	sumptions:		
	1.	Attackers are able to send any packet		
	2.	Multiple attackers can act together		
	3.	Attackers are aware of the traceback scheme		
	4.	Attackers must send at least thousands of packets		
	5.	Routes between hosts are in general stable, but packets can be reordered or lo	ost	
	6.	Routers can not do much per-packet computation		
	7.	Routers are not compromised, but not all routers have to participate		
	8.	It is difficult to change the marking algorithm used by routers		
	9.	It is easy to change the reconstruction algorithm used by victims		

