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Some preparation

In preparation for the afternoon session, download and 
read the following paper:

● “Data Driven Authentication: On the Effectiveness of User 
Behaviour Modelling with Mobile Device Sensors”, in MoST 
2014.

– http://arxiv.org/abs/1410.7743 

● Can also find this on my webpage at

– www.justmikejust.co.uk/publications 

http://arxiv.org/abs/1410.7743
http://www.justmikejust.co.uk/publications
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Behavioural authentication
● Challenges with explicit forms of authentication

– Knowledge: Creation and recall of information

– Possession: Issuance and retention

– Physiological: Can be explicit or implicit (behaviour)

● Let's focus on implicit

– Capturing and verifying natural user actions

– Discussed for decades, and today's “big data” helps
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Behavioural authentication
● Several interesting forms of implicit behaviour

– Talking, handwriting, walking (gait), etc. 

– Online behaviour, such as location, IP [NDSS'16]

– All of which are interesting to study

● But let's follow a different approach

– What's a good source of data to use?

– What's a resource that needs protection
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Mobile device security

● Payment functions, sensitive data

● BYOD, enterprise security

● PINs, patterns, passwords de-facto methods
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Insecurity & unusability
● Most people don't lock their smartphones

– 64% (Consumer Reports, '13)

● Many who do lock, find it annoying

– 40-47% (Harbach et al., '13; Egleman et al., '14)

● Current smartphone protections are a failure

– Security: No protection for most users

– Usability: Annoying experience for many users
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Implicit authentication for 
mobile devices?
● Current authentication designed for fixed PCs

● Modern mobile devices offer rich new services

– Many applications, several sensors

● People have strong connection with devices

– Much data is collected 

● Many interactions: sensor-based & data-driven

● Why not implicit device authentication?
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Sensor-based authentication
● Basic idea

– Use sensor data to train device

– Result is a user profile for the device

– Subsequent sensor input is compared to profile

– If match: no PIN/pattern/password required

● Ideal result

– “No lock” users: security better, usability “ok”

– “Lock” users: security “ok”, usability better
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Many questions (1)

● Will fewer explicit authentications be less 
annoying to users who currently lock their 
devices?

● Will fewer explicit authentications encourage 
non-adopters to lock their devices?

● Can devices be trained to recognize users? If so, 
how long does training take? Re-training?

● What is the impact on security? Would devices 
become more vulnerable? Would users feel 
more/less secure?
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Many questions (2)

● Collecting sensor data consumes resources. 
Can today’s devices do this effectively, without 
a noticeable impact on resources (e.g., 
battery)?

● Are some sensors more effective than others? 
If so, how effective is it to profile user 
behaviour?

● How often must sensors be sampled? How 
does the sampling rate impact battery 
consumption, and security?



31/07/16 11

Many problem interesting areas
● Modeling behaviour from sensors

● Security

● Resource consumption

● Usability, adoption
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Lecture outline
● Modeling behaviour from sensors

● Security

● Resource consumption

● Usability, adoption
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Multiple models
● NB: The following slides present a variety of 

research that I've tried to assimilate

● Pubs: MoST '14, PerCom '15, MobileHCI '15

● Varying factors

– Data: Cell vs. WiFi for location 

– Participant sizes varied for each experiment

– Models: Decision trees vs. simple histograms



31/07/16 14

Multiple models
● Following slides will focus mostly on 

– Histogram based model

– Larger sensor dataset

● Data collection app 

– Same one used across all cases

– Built our own
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Sensors & datasets
● Sensors

– Location: Cellular, WiFi

– Ambient: Light, magnetometer, microphone

– Behavioural: Accelerometer, app usage, rotation

● Datasets

– Collected from real-world behaviour

– Approximately 30 participants, several weeks
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Data representation

● Cell tower ID observed at time t

● Sensors provide single or multiple samples

● Discrete or continuous data

Time Location Probe Values

1396184023 Cell1 Wif Wif1, Wif2

1396184077 Cell1 App App1,  App3,  App4

1396184192 Cell1 Light 15 lux

1396184201 Cell2 Noise 57 dB

1396184227 Cell3 Magnetic [+0.1, +0.5, +0.3]

1396184301 Cell3 Rotation [+0.2, +0.7, -0.1]
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Modeling behaviour (1)

● Sensor readings for 
two “anchors”

– Location (spatial)

– Time (temporal)

● User profile consists 
of sensor readings for 
different locations 
and times

Cell=112
561

App

Wi-Fi

Light

Noise

Cpu

Rotatio
n

Magne
tic

Cell=112
2134

…
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Modeling behaviour (2)

● When building a profile, 
inputs are collected for 
each sensor in both the 
temporal and spatial 
models and represented 
as probability distribution 
functions (pdfs)

● When validating a score, 
sensor data is compared 
to each profile pdf, for 
both location and time
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Building profles
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Building profles (temporal)
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Building profles (temporal)
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Building profles (spatial)
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Building profles (spatial)
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Computing comfort

Temporal
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic

Temporal
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic

Spatial 
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic

Spatial 
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic
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Each input creates 
a temporal and a 
spatial conditional 
probability
(or comfort).
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Computing comfort

Temporal
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic

Temporal
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic

Spatial 
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic

Spatial 
● App
● Wif
● Light
● Noise
● Rotation
● Magnetic
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[.0, .2, .2]

 Data from sensors compared to models
 Each event produces two comfort scores

1. Score from each sensor is 
aggregated into a sensor score frst

2. Scores from sensors are aggregated 
into temporal and spatial scores

3. Overall comfort score, is computed 
by aggregating temporal &       
spatial scores
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Computing comfort (5 months)
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Computing comfort (1 week)
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Computing comfort (1 day)



31/07/16 29

Setting detection threshold

● Set automatically based upon past 
observations and performance to balance 
security and usability

– Balance of FAR and FRR
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Training duration & 
convergence

● How long does it take to train a device?

● Can measure comfort score changes between 
days

– Following graph compares between day N and N-1 
using Levenshtein distance 



31/07/16 31

Convergence results
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Convergence results
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Convergence results
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Convergence results

● Typically 3-5 days to establish rough estimate 
of user model

– Familiar locations, available networks, favourite 
apps

● 1-2 weeks to establish a finer model

– Ordering of locations, ordering of WiFi, etc.

● Retraining

– Some degradation after about 6 months
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Behaviour drift

● Drift in scores (and hence, behaviour) in 
examples users from all three datasets over 6 
months
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Lecture outline
● Modeling behaviour from sensors

● Security

● Resource consumption

● Usability, adoption
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Security model
● Four attack profiles

– Uninformed. Low knowledge.

– Informed. Some knowledge.

– Outsider. Low access.

– Insider. Some access

● Owner uses device for a few weeks

– Models are built

– Threshold is determined

● Attacker behaviour simulated by an individual 
who assumes each of the attack profiles
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1: Uninformed outsider
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2: Informed outsider
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3: Uninformed insider
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4: Informed insider
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Lecture outline
● Modeling behaviour from sensors

● Security

● Resource consumption

● Usability, adoption
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Mobile device consumption
● Sensor use offers more than PC

– Rich interactions: user, device, environment

● Sensors also consume resources (battery)

● Battery capacity increases, but demand is high

– Samsung Galaxy S3-S5: 2100-2600-2800mAh

● Some users charge devices multiple times a 
day
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Related work 
(resource consumption)

● Minimise use of “high drain” sensors

– (Wu et al., 2013; Paek et al., 2010; Zhuang et al., 
2010; Wang et al., 2009)

● Innovative solutions

– Shared caching (Hopfner et al., 2003)

– Speculative sensing (Nath et al., 2012)

– Selective sampling (Krause et al., 2005)

– Adaptive sampling (Rachuri et al., 2012)

● Optimising for security not considered
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Related work 
(sensor authentication)

● Learning user behaviour from sensor data

– (Kayacik et al., 2014; Gupta et al., 2012; Shi et al., 
2011)

● Detect anomalies when user behaviour doesn't 
match profile

● Typically assumes fixed sampling rate

● No consideration of battery consumption
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Battery consumption - 
Method

● Hardware 

– 2 Samsung Galaxy S4

● Method

– Both devices carried through “daily routine” for four 
full days

● Tools

– Our sensor data collector

– PowerTutor: measure mW consumed by collector
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Battery consumption – 
Results (1)

● Proportional drop in consumption as sampling 
frequency decreases

Rate Battery Consumption (mAh)
1 min 10.83

5 min 2.72

10 min 1.04

15 min 0.71

20 min 0.45 
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Battery consumption – 
Results (2)

● Sampling rate = 1 min

● Some high consumers

Active Sensor Battery Consumption (mAh)
Accelerometer 2.08

Apps Usage 1.46

GPS 2.31

Light 0.86

Magnetic Field 0.49 

Microphone 1.71

Gyro 2.01

Wi-Fi + Cell 1.62 

Active Sensor Battery Consumption (mAh)
Accelerometer 2.08

Apps Usage 1.46

GPS 2.31

Light 0.86

Magnetic Field 0.49 

Microphone 1.71

Gyro 2.01

Wi-Fi + Cell 1.62 
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Battery consumption – 
User impact

● Impact to light, medium and high users

● Significant impact for light and medium

Rate Light Drain Medium Drain High Drain
baseline 260.00h 28.89h 10.40h

1 min 124.80h (52.0%) 25.79h (10.7%) 9.97h (4.1%)

5 min 204.39h (21.4%) 28.04h (2.9%) 10.29h (1.1%)

10 min 235.30h (9.5%) 28.55h (1.2%) 10.36h (0.4%)

15 min 242.79h (6.6%) 28.66h (0.8%) 10.37h (0.3%)

20 min 248.85h (4.3%) 28.74h (0.5%) 10.38h (0.2%)
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Attack detection - Method

● Attacks

– Uninformed adversary 

– Informed adversary

– Varying knowledge (e.g., app usage) and access 
(e.g., locations)

● Data sets

– Normal usage (3 weeks) for 4 users

– Attack scenarios from 1 user
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Attack detection results -
All sensors, Uninformed

● Detection time unacceptable for >= 5 minute 
sampling

● Detection rate not affected 

Rate Uninformed Attack Normal
Detection Time Detection Rate False Positives Rate

1 min 183s (~3min) 92.07% 1.39%

5 min 3591s (~1hr) 92.10% 0.72%

10 min 4790s (~1.3hr) 92.98% 1.45%

15 min 5406s (~1.5hr) 96.42% 3.26%

20 min 5987s (~1.6hr) 95.65% 1.47%

Rate Uninformed Attack Normal
Detection Time Detection Rate False Positives Rate

1 min 183s (~3min) 92.07% 1.39%

5 min 3591s (~1hr) 92.10% 0.72%

10 min 4790s (~1.3hr) 92.98% 1.45%

15 min 5406s (~1.5hr) 96.42% 3.26%

20 min 5987s (~1.6hr) 95.65% 1.47%

Rate Uninformed Attack Normal
Detection Time Detection Rate False Positives Rate

1 min 183s (~3min) 92.07% 1.39%

5 min 3591s (~1hr) 92.10% 0.72%

10 min 4790s (~1.3hr) 92.98% 1.45%

15 min 5406s (~1.5hr) 96.42% 3.26%

20 min 5987s (~1.6hr) 95.65% 1.47%
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Attack detection results -
All sensors, Informed

● Attacks undetected for >=10 min sampling rate

● Detection rate is very low

Rate Informed Attack Normal
Detection Time Detection Rate False Positives Rate

1 min 1657s (~27min) 28.82% 1.39%

5 min 6012s (~2.6 hr) 20.00% 0.72%

10 min Undetected 1.45%

15 min Undetected 3.26%

20 min Undetected 1.47%

Rate Informed Attack Normal
Detection Time Detection Rate False Positives Rate

1 min 1657s (~27min) 28.82% 1.39%

5 min 6012s (~2.6 hr) 20.00% 0.72%

10 min Undetected 1.45%

15 min Undetected 3.26%

20 min Undetected 1.47%

Rate Informed Attack Normal
Detection Time Detection Rate False Positives Rate

1 min 1657s (~27min) 28.82% 1.39%

5 min 6012s (~2.6 hr) 20.00% 0.72%

10 min Undetected 1.45%

15 min Undetected 3.26%

20 min Undetected 1.47%
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Attack detection results -
Ambient/All sensors

● 1 minute sampling rate

● No sensor sub-set does as well as all sensors

Sensor Uninformed Informed Normal
Detection 

Time
Detection 

Rate
Detection 

Time 
Detection 

Rate
False 

Positives

Wi-Fi 183s (~3min) 100% 1825s (~30min) 9.03% 28.10%

Noise 1020s (~17min) 59.64% Undetected 0.66%

Magnetic Undetected Undetected 1.83%

Light Undetected 3686s (~1 hr) 6.02% 40.98%

Ambience 183s (~3min) 97.36% Undetected 1.10%

All 183s (~3min) 92.07% 1657s (~27min) 28.82% 1.47%

Sensor Uninformed Informed Normal
Detection 

Time
Detection 

Rate
Detection 

Time 
Detection 

Rate
False 

Positives

Wi-Fi 183s (~3min) 100% 1825s (~30min) 9.03% 28.10%

Noise 1020s (~17min) 59.64% Undetected 0.66%

Magnetic Undetected Undetected 1.83%

Light Undetected 3686s (~1 hr) 6.02% 40.98%

Ambience 183s (~3min) 97.36% Undetected 1.10%

All 183s (~3min) 92.07% 1657s (~27min) 28.82% 1.47%
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Attack detection results -
Behavioural/All sensors

● 1 minute sampling rate

● No sensor sub-set does as well as all sensors

Sensor Uninformed Informed Normal
Detection 

Time
Detection 

Rate
Detection 

Time
Detection 

Rate
False 

Positives

App 183s (~3min) 100% 1290s (~21min) 80.72% 40.98%

Accel Undetected Undetected 0.58%

Gyro 593s (~10min) 94.73% Undetected 5.88%

Behavioral 6233s (~1.7hr) 13.15% 1825s (~30min) 3.61% 1.03%

All 183s (~3min) 92.07% 1657s (~27min) 28.82% 1.47%

Sensor Uninformed Informed Normal
Detection 

Time
Detection 

Rate
Detection 

Time
Detection 

Rate
False 

Positives

App 183s (~3min) 100% 1290s (~21min) 80.72% 40.98%

Accel Undetected Undetected 0.58%

Gyro 593s (~10min) 94.73% Undetected 5.88%

Behavioral 6233s (~1.7hr) 13.15% 1825s (~30min) 3.61% 1.03%

All 183s (~3min) 92.07% 1657s (~27min) 28.82% 1.47%
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Attack detection results -
Summary

● Less than 1 min sampling rate leaves device 
vulnerable

● No one-size-fits-all combination of sensors is 
satisfactory

● Possible improvement

– Adaptively change the sampling rate

– Only use 1 min sampling “when necessary”
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Adaptive sampling - 
Description

● Alter sampling rate based on triggers

● Investigated 4 adaptive sampling techniques

– Relative change in detection score

– Absolute detection score level

– Context-based: Based on device location

– Time-based: Based on hour-of-day

● Will mostly focus on first technique (above)

– Increase (d>0.5) 

– Maintain (0.1<d<0.5)

– Decrease (d<0.1)
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Adaptive sampling – 
Normal use (1)

● Relative comfort changes trigger sampling rate 
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Adaptive sampling – 
Normal use (2)

● Absolute comfort triggers sampling rate 
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Adaptive sampling results 
– Uninformed attack

● Similar DT and DR

● Battery consumption halved during attack

● Battery consumption reduced 7-fold during 
normal use

Technique Uninformed Normal

Detection 
Time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1 min) 183 (~3min) 92.07 10.83 1.39 10.83

Change in 
Detection Score

183 (~3min) 97.37 5.34 3.15 1.54

Technique Uninformed Normal

Detection 
Time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1 min) 183 (~3min) 92.07 10.83 1.39 10.83

Change in 
Detection Score

183 (~3min) 97.37 5.34 3.15 1.54

Technique Uninformed Normal

Detection 
Time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1 min) 183 (~3min) 92.07 10.83 1.39 10.83

Change in 
Detection Score

183 (~3min) 97.37 5.34 3.15 1.54

Technique Uninformed Normal

Detection 
Time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1 min) 183 (~3min) 92.07 10.83 1.39 10.83

Change in 
Detection Score

183 (~3min) 97.37 5.34 3.15 1.54
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Adaptive sampling results 
– Uninformed attack

● Relative comfort changes trigger sampling rate
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Adaptive sampling results 
– Uninformed attack

● Absolute comfort triggers sampling rate
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Adaptive sampling results 
– Informed attack

● DT and DR improved (statistical anomaly)

● Battery consumption reduced 6-fold during 
attack

● Battery consumption reduced 7-fold during 
normal use

Technique Informed Normal

Detection 
time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1min)
1657 

(~27min)
28.82 10.83 1.39 10.83

Change in 
Detection score

1206
(~20min)

36.48 1.75 3.15 1.54

Technique Informed Normal

Detection 
time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1min)
1657 

(~27min)
28.82 10.83 1.39 10.83

Change in 
Detection score

1206
(~20min)

36.48 1.75 3.15 1.54

Technique Informed Normal

Detection 
time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1min)
1657 

(~27min)
28.82 10.83 1.39 10.83

Change in 
Detection score

1206
(~20min)

36.48 1.75 3.15 1.54

Technique Informed Normal

Detection 
time (s)

Detection 
Rate (%)

Battery 
Cost 

(mAh)

False 
Positives 
Rate (%)

Battery 
Cost 

(mAh)

Baseline (1min)
1657 

(~27min)
28.82 10.83 1.39 10.83

Change in 
Detection score

1206
(~20min)

36.48 1.75 3.15 1.54
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Adaptive sampling results 
– Informed attack

● Relative comfort changes trigger sampling rate
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Adaptive sampling results 
– Informed attack

● Absolute comfort triggers sampling rate
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Lecture outline
● Modeling behaviour from sensors

● Security

● Resource consumption

● Usability, adoption
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Usability study objectives
● Objective 1: How do users perceive proposal 

re: annoyance, convenience, security?

● Objective 2: Will users adopt our proposal?

● Objective 3: Which of “No Lock” or “Lock” 
users chose to adopt our proposal?

● Objective 4: In which locations was our 
proposal used?
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Usability study method
● Phase 1: Build a profile based on user-device 

behaviour with 1 week of sensor data

● Phase 2: Deploy our proposal: PIN/pattern  
requested if sensors readings don't match

● Phase 3: Give users the option to continue with 
our proposal or not. And by location.
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Usability evaluation

● System Usability Scale (SUS) questionnaire

● User perception questionnaire

– Annoyance, convenience, security

● Ranking of mechanisms 

– Annoyance, convenience, security

● Efficiency results (empirical)

– Number of logins

– Time taken to login
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Efficiency results (1) 

● Moderate increase of unlocks for users who 
currently do not lock their phone. (green)

● Considerable decrease of unlocks for users 
who currently lock their phone. (yellow)

Group Phase I Phase II Phase III
“No Lock” 0 of 62 (0%) 23 of 68 (34%) 14 of 59 (24%)

“Lock” 45 of 45 (100%) 16 of 56 (29%) 12 of 46 (26%)

Table 1. Average number of times that participants entered a 
PIN/pattern per day to unlock their phone.

Group Phase I Phase II Phase III
“No Lock” 0 of 62 (0%) 23 of 68 (34%) 14 of 59 (24%)

“Lock” 45 of 45 (100%) 16 of 56 (29%) 12 of 46 (26%)

Group Phase I Phase II Phase III
“No Lock” 0 of 62 (0%) 23 of 68 (34%) 14 of 59 (24%)

“Lock” 45 of 45 (100%) 16 of 56 (29%) 12 of 46 (26%)
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Efficiency results (2) 

● Considerable decrease in time spent unlocking 
the phone for users who currently lock their 
phone. 

Group Phase I Phase II Phase III
“No Lock” 0 seconds 131 seconds 86 seconds

“Lock” 240 seconds 105 seconds 90 seconds

Table 2. Average time taken per day (sec) to enter PIN/Pattern.

Group Phase I Phase II Phase III
“No Lock” 0 seconds 131 seconds 86 seconds

“Lock” 240 seconds 105 seconds 90 seconds
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Perception – Annoyance 
(by phase)

● No lock group feels more annoyed in Phase II 
(yellow) but this annoyance level decreases in 
Phase III (green). 

● Lock group feels less annoyed when using the 
proposed mechanism in Phase II  & III (orange). 

Group Phase I Phase II Phase III
“No Lock” 2 2.62 2.02

“Lock” 3.13 1.89 1.79

Table 3. Average ratings across each of the 3 phases. 
(1. Strongly disagree, 5. Strongly agree). 

The number of times in which I had to unlock 
my phone today was annoying.

Group Phase I Phase II Phase III
“No Lock” 2 2.62 2.02

“Lock” 3.13 1.89 1.79

Group Phase I Phase II Phase III
“No Lock” 2 2.62 2.02

“Lock” 3.13 1.89 1.79
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Perception – Annoyance 
(ranking)

● Proposed mechanism ranked 2nd least 
annoying and significantly better than 
password, PIN and pattern.

Mechanism Annoyance
Password 1.84

Pattern 2.31

PIN 2.47

Proposed mechanism 3.95

No lock 4.42

Table 4. Perception of annoyance (1=most annoying, 5=least 
annoying).

Mechanism Annoyance
Password 1.84

Pattern 2.31

PIN 2.47

Proposed mechanism 3.95

No lock 4.42
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Perception – 
Convenience (by phase)

● No lock group feels less convenient in Phase II 
(yellow) but the convenience level increases in 
Phase III (green). 

● Lock group feels the proposed mechanism is 
more convenient both in Phase II & III (orange). 

Group Phase I Phase II Phase III
“No Lock” 3.77 3.26 3.81

“Lock” 3 4.02 3.82

Table 5. Average ratings across each of the 3 phases. 
● (1. Strongly disagree, 5. Strongly agree). 

Overall, the number of times in which I unlocked 
the phone today was convenient.

Group Phase I Phase II Phase III
“No Lock” 3.77 3.26 3.81

“Lock” 3 4.02 3.82

Group Phase I Phase II Phase III
“No Lock” 3.77 3.26 3.81

“Lock” 3 4.02 3.82
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Perception – Convenience 
(ranking)

● Proposed mechanism ranked 2nd most 
convenient and significantly better than PIN 
and password.

Mechanism Convenience
No lock 1.55

Proposed mechanism 2.42

Pattern 3.58

PIN 3.84

Password 4.47

Table 6. Perception of convenience (1=most convenient, 
5=least convenient).

Mechanism Convenience
No lock 1.55

Proposed mechanism 2.42

Pattern 3.58

PIN 3.84

Password 4.47
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Perception – Security 
(by phase)

● Both groups feel secure when using the 
proposed mechanism in Phase II & III (yellow).

Group Phase I Phase II Phase III
“No Lock” 3.22 3.6 4

“Lock” 3.63 3.68 3.86

Table 7. Average ratings across each of the 3 phases. 
(1. Strongly disagree, 5. Strongly agree). 

 I felt secure with today’s phone protection 
mechanism.

Group Phase I Phase II Phase III
“No Lock” 3.22 3.6 4

“Lock” 3.63 3.68 3.86
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Perception – Security 
(ranking)

● Proposed mechanism ranked 3rd most secure 
and significantly better than the No lock.

Mechanism Security
Password 2

PIN 2.17

Proposed mechanism 2.79

Pattern 2.9

No lock 5

Table 8. Perception of security (1=most secure, 5=least 
secure). 

Mechanism Security
Password 2

PIN 2.17

Proposed mechanism 2.79

Pattern 2.9

No lock 5
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Perception Summary
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Adoption results (1)

● (8+9)/20 = 85% adoption rate

Location “No Lock” “Lock”
Home 1 9
Work 4 5

Other Places 7 3

On the move 5 4

New Places 8 2

Overall 8 9

Table 9. Final adoption results distributed by location.

Location “No Lock” “Lock”
Home 1 9
Work 4 5

Other Places 7 3

On the move 5 4

New Places 8 2

Overall 8 9
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Adoption results (2)

● Adoption patterns tended towards increased 
usability, e.g., “at home”

– Only 1 of 10 “no lock” users adopted our solutions 
(preferring to use no lock at home)

– 9 of 10 “lock” users adopted our solutions (preferring 
reduced # of unlocks at home)
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Some reading

● N. Micallef, M. Just, L. Baillie, M. Halvey, G. Kayacik, 
“Why aren’t users using protection? Investigating the 
usability of smartphone locking”, in MobileHCI 2015.

● N. Micallef, G. Kayacik, M. Just, L. Baillie, D. Aspinall, 
“Sensor use and usefulness: Trade-offs for data-driven 
authentication on mobile devices”, in PerCom 2015.

● G. Kayacik, M. Just, L. Baillie, D. Aspinall, N. Micallef, 
“Data Driven Authentication: On the Effectiveness of 
User Behaviour Modelling with Mobile Device Sensors”, 
in MoST 2014.
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Behaviour drift
● Detection by periodically comparing scores

● Dramatic behaviour change (move to a new 
city) with incremental or complete retraining

● Similar, though complete adapts quicker
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