RootkitDet: Practical End-to-End Defense
against Kernel Rootkits in a Cloud Environment

Lingchen Zhang!?#, Sachin Shetty?, Peng Liu®, and Jiwu Jing!
! State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences
2 College of Engineering, Tennessee State University
3 College of IST, Penn State University
4 University of Chinese Academy of Sciences

Abstract. In cloud environments, kernel-level rootkits still pose seri-
ous security threats to guest OSes. Existing defenses against kernel-level
rootkit have limitations when applied to cloud environments. In this
paper, we propose RootkitDet, an end-to-end defense system capable of
detecting and diagnosing rootkits in guest OSes with the intent to recover
the system modifications caused by the rootkits in cloud environments.
RootkitDet detects rootkits by identifying suspicious code region in the
kernel space of guest OSes through the underneath hypervisor, performs
diagnosis on the code of the detected rootkit to categorize it and iden-
tify modifications, and reverses the modifications if possible to eliminate
the effect of rootkits. Our evaluation results show that the RootkitDet is
effective on detection of kernel-level rootkits and recovery modifications
with less than 1% performance overhead to the guest OSes and the com-
putation and network overhead is linear with the quantity of the VM
instances being monitored.

Keywords: Hypervisor, VM, Kernel-level rootkit, Defense, Cloud.

1 Introduction

A kernel rootkit is a form of malware that may subvert the kernel to achieve
various goals, especially hiding certain malicious processes from security mon-
itoring, anti-virus software, intrusion detection, and VMI (virtual machine in-
trospection). A typical way for a kernel rootkit to achieve its goals is to modify
certain kernel data structures. During the past 10 years, kernel-level rootkits
have been emerging as a major security threat. For example, MacAfee Avert
Labs [1] reported that during the three-year period from 2004-2006, the number
of rootkits had increased 600 percent. Rootkits have been leveraged by criminals
to conduct bank fraud [2].

In this paper, we focus on defending against kernel rootkits in a cloud en-
vironment. In such cloud environments as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS), kernel rootkits
should be as useful to criminals/attackers as in non-cloud environments. Taking
TaaS as an example, kernel rootkits may enable the criminal to keep a backdoor
in a VM (virtual machine) for the attacker to gain whole control of the guest

M. Kutylowski and J. Vaidya (Eds.): ESORICS 2014, Part IT, LNCS 8713, pp. 475-493, 2014.
© Springer International Publishing Switzerland 2014

476 L. Zhang et al.

operating system. They may also hide some other malware which may inflict
serious damage or launch stealthy attacks. Due to the hiding, this malware can
become difficult to detect or eliminate by the administrator.

In a cloud environment, cloud providers are responsible for countering ker-
nel rootkits in tenant VMs as they can fully leverage the security features of
the underneath hypervisors. We focus on cloud environments since besides stan-
dard requirements such as effectiveness and efficiency, cloud environments have
several unique requirements regarding how kernel rootkits should be countered.
(R1) End-to-end defense is highly desired. Besides detecting a rootkit, cloud ad-
ministrators also need to quickly reverse the malicious modifications made by the
rootkit to its target VM. If the admin has to manually diagnose and reverse the
malicious modifications, the availability and business continuity loss could be too
much to be accepted by the tenant. (R2) Scalable defense. The total defense cost
should be linear (if not sublinear) in the number of VMs being simultaneously
protected. The defense should also facilitate dynamic addition and deletion of
VMs. (R3) Adoptable defense. The defense should be compatible with existing
commercial (and open source) cloud platforms.

Although many research works have been done to tackle kernel rootkits, ex-
isting defenses are limited in meeting the requirements cloud environments have.
To see how existing defenses are limited, let us break down the existing kernel
rootkit defenses into 4 classes which we will review shortly in Section 6: (1A) De-
tecting modified control or non-control data or violations of invariants [3] [4] [5]
[6]. (1B) Preventing installation of kernel rootkits by performing analysis on the
code being loaded into the kernel space [7] [8] [9]. (1C) Defending kernel rootkits
by cooperating with anti-malware software [10] [11]. (1D) Protecting the kernel
by restoring infected kernels to healthy state [12]. We may briefly summarize
the limitations of these defenses in terms of the requirements as follows. (a) De-
fenses in Class 1A and 1C are not end-to-end or focus only on control data. (b)
Defenses in Class 1B and 1D might be defeated by the rootkits leveraging novel
techniques or kernel vulnerabilities [13] and some of them are not very easy to
be adopted because they are designed based on special hypervisors. (¢) Defenses
in Class 1C are not very scalable because they have to create multiple instances
of anti-malware sofware to monitor multiple VMs.

To overcome the above limitations, in this paper we propose RootkitDet, an end-
to-end defense against kernel rootkits in a cloud environment. RootkitDet works
as follows. First, it detects the kernel rootkits by looking for suspicious code in
the kernel space of the guest OSes. Second, once a rootkit is detected, it will do
diagnosis to precisely identify kernel data structures that were maliciously mod-
ified by the rootkit. Third, it attempts to reverse the modifications. Due to the
following insight, RootkitDet employs a simple detection idea. Insight: A registra-
tion procedure can be leveraged to enable separation between legitimate code and
rootkit code in the kernel space. After a rootkit is detected in guest OSes, Rootk-
itDet attempts to eliminate the effect of the rootkit. RootkitDet first performs
static analysis on the suspicious code to collect certain characteristic information
of the rootkit. Then, it tries to categorize the rootkit heuristically according to the

End-to-End Defense against Kernel Rootkits in a Cloud Environment 477

collected characteristic information. If the rootkit can be categorized, RootkitDet
would be able to identify the kernel data structures that were malicious modified
by the rootkit. Finally, RootkitDet reverses the modifications as follows: it restores
the modified control data with pre-known values, and recovers the broken links be-
tween the modified non-control data and other data structures.

We have designed and implemented a RootkitDet system prototype atop
KVM [14] (qemu-kvm-1.2.0).Our evaluation results show that RootkitDet can
meet the requirements cloud environments have on kernel rootkits defense. In
sum, our main contributions are as follows.

— RootkitDet offers end-to-end defense against kernel rootkits in a cloud envi-
ronment: from detection to diagnosis to recovery. To the best of our knowl-
edge, RootkitDet is the first work that focuses on end-to-end defense in cloud
environments.

— RootkitDet is an effective defense. The evaluation results show that Rootk-
itDet can detect a kernel rootkit as long as the rootkit inserts code into the
kernel space of a guest OS. RootkitDet can do recovery (i.e., reverse the
modifications by the rootkit) if the rootkit is categorized successfully.

— RootkitDet is a practical defense against kernel rootkits in cloud environ-
ments. The evaluation results show that the average performance overhead
introduced in guest OSes is less than 1% when the max detection cycle is 16
seconds, and the total defense cost (CPU, network bandwidth) is linear in
the number of the VMs being protected.

2 Threat Model and Assumptions

In this section, we present the threat model and assumptions for the kernel-level
rootkits detection system.

2.1 Threat Model

A cloud user allocates several virtual machines to provide some services, web-
based service most popular, to customers. We consider an attacker who intends
to install a rootkit into the kernel of VMs to keep the control of the system and
hide himself. Upon successful installation of a kernel-level rootkit, the attacker
will control the entire VMs and do whatever attacks he wants to except system
crash or DoS. Following are examples of attacks after a successful kernel-level
rootkit installation: collection of confidential data, arbitrary modification of all
memory contents, abuse of the computing capacity and network bandwidth.

To install the rootkit into the VMs, the attacker may take advantages of zero-
day vulnerabilities in the kernel and application software running in the VMs
to gain privilege of arbitrary code execution step by step. Due to the various
objectives, the attackers have to craft specific code and insert them into the
kernel space of the VMs. Return-oriented kernel-level rootkits are out of our
scope because they can be used to install a rootkit but not run as long-term
rootkits and are not reentrant for different processes. Due to similar reasons,
DKOM (Direct Kernel Object Manipulation), ret-to-user and rootkits that are
erased immediately after executed are also out of our scope.

478 L. Zhang et al.

2.2 Assumptions

We assume that modern CPUs of X86 architecture provide NX (non-executalbe)
feature as part of page-based memory protection. For the sake of simplicity, we
assume that the kernel of guest OSes supports loadable kernel modules(LKMs)
and a LKM may be dynamically loaded into the kernel either explicitly by the
administrator of the guest OS or implicitly by an application running in the
guest OS. Moreover, we assume that kernel and modules may be vulnerable, but
not malicious. Rootkits can be installed into the running kernel space but not
exist in the kernel or modules when the kernel is built.

3 Overview of RootkitDet System

The goal of RootkitDet system is to provide an end-to-end defense against kernel-
level rootkits in cloud environments. To achieve its goal, RootkitDet system takes
three steps: detection, diagnosis and recovery. In this section, we describe the
overview of RootkitDet system and its architecture.

3.1 Overview

The first step of RootkitDet system is to detect the kernel-level rootkits installed
into the guest OSes. RootkitDet system identifies suspicious code, which is taken
as the code of rootkits, in the kernel space of guest OSes. By ”suspicious”, we
mean a memory region that is not supposed to hold any code or a region that
holds illegitimate code. Legitimate code in the kernel space of a guest OS which
is not infected by rootkits comprises kernel code and the code of benign LKMs.
To separate the code of rootkits from legitimate code, we introduce a simple,
practical and effective registration procedure.

Registration procedure is a requirement of RootkitDet system that the ad-
ministrator of a guest OS registers the kernel and potential LKMs of the guest
OS in advance. Registration of the kernel provides enough information to bridge
semantic gap [11] in our system. To register a kernel that will run in a guest
OS, the administrator should provide the source code, configuration file, sys-
tem.map as well as the binary file of the kernel. The kernel of a guest OS should
be registered prior to the execution of the virtual machine which the guest OS
runs on. Registration of LKMs is critical to separating legitimate code and the
rootkits. To register a LKM that is probable to be loaded during the lifetime of
the guest OS, the administrator should provide the module’s name and object
file. A module should be registered before it is loaded into the kernel, even if
the guest OS is running. We suppose that registration procedure is performed
through a secure channel, which is unknown to the attacker.

To detect suspicious code in the kernel space of a guest OS, RootkitDet sys-
tem reconstructs the page directory of the kernel space of the guest OS, identi-
fies all executable regions and compares them with expected executable regions
which hold legitimate code. RootkitDet system works as follows: First, it detects

End-to-End Defense against Kernel Rootkits in a Cloud Environment 479

H \ ;
i e
conductor
Cuest 08 conductor
" Guestkemel)

Guest OS 1 Guest OSn

7 Guest™, 7 Guest ™S,
\kemel 1! \kemeln !

detector analyzer metadata n . .
detector analyzer hyPe“"S‘\L h)’PEWlSQL

A A ’7 ’7
Hypervisor | inspector ‘ A T

L

Fig. 1. Basic architecture (left) and scalable architecture (right) of RootkitDet

whether extra executable regions exist in the kernel space. Extra regions are dif-
ferent from that holds legitimate code. Second, it detects whether some code
resides in unused space of modules. Finally, it detects malicious modifications
to the legitimate code by computing SHA-1 checksums of the legitimate code
and comparing them with expected values. Any mismatch means that legitimate
code is modified by the rootkits.

The second step of RootkitDet system is to diagnose the detected rootkit.
RootkitDet system attempts to categorize the detected rootkits and precisely
identify the objects and data structures that are modified by the rootkit. To
help categorization of a rootkit, we generate profiles of known typical rootkits
in advance. RootkitDet system performs static analysis on the code of the de-
tected rootkit to collect characteristic information, which is used to categorize
the rootkit by matching with the profiles of known typical rootkits.

The profile of a typical rootkit includes: a) The tactic adopted by the rootkit
to achieve its intention. We describe the tactic by a set of semantic actions,
including external function calls, access to global variables and dynamic allocated
data structures. b) The data structures that we should recover according to its
tactic. In general, these data structures are dynamically allocated but we can
find its location tracking down from a global variable with fixed location.

The final step of RootkitDet system is to recover the objects and data struc-
tures that were modified by the rootkit. The rootkit may make modifications
to control data and non-control data. Control data are usually function point-
ers existing in kinds of data structures. Therefore, the expected values of control
data are already known and it is easy to recover such modifications. By contrast,
modifications to non-control data are various and usually there are no expected
values for them. However, some modifications to non-control data break the links
to other objects or violate some invariant that keeps in uninfected kernel. We
can figure out how to recover such modifications in the kernel’s context.

3.2 Architecture

As shown in Fig. 1, the basic system of RootkitDet comprises several compo-
nents: registration, conductor, detector, analyzer and inspector. In our system,
all components except inspector are independent of the hypervisor, and thus can
run in a different OS running on a virtual machine or a physical machine.

480 L. Zhang et al.

Inspector. Inspector is integrated into the hypervisor to provide a reliable
interface to access the kernel space memory and CPU registers of guest OS. This
interface is used by detector and analyzer. It is worth noting that it is rarely
necessary to stop running of the guest OS when the inspector reads or writes
the memory of the guest OSes because our system accesses unusually changed
memory during detection and recovery procedures in most of the time. Besides,
inspector is easily developed in most cloud platforms due to its simplicity so that
our system is easy to adopt by most cloud providers.

Detector. Detector performs three detection procedures to find out whether
kernel-level rootkits exists in guest OS according to the commands coming from
the conductor. In detection procedure 1, detector reconstructs the list of loaded
modules and generates the list of executable regions in the kernel space, then
compares them to find out whether extra executable regions exist besides the
regions of the kernel code and registered modules. In detection procedure 2,
detector checks whether some code resides in the unused space of each module.
In detection procedure 3, detector calculates checksums for the code of the kernel
and modules, and compares them with original ones, which are provided by the
conductor, to check integrity of the legitimate code in the kernel space.

Detection procedure 1 and 2 might be bypassed because detector depends on
the memory of guest OSes, which might be under the control of rootkits. For
instance, a rootkit may tamper with the information of a module and change the
module’s code size to a bigger value, and put its code right behind the module’s
code, pretending itself as part of the module to escape from detection. We leave
this problem to the conductor and the conductor resolves it when generating the
original hash values for all of the modules.

Conductor. Conductor is the heart of our system. It periodically sends com-
mands to detector to start detection procedures when the guest OS is running.
Once rootkits are detected, it receives the detection report from detector, then
raises an alert to the administrator and activates analyzer. Conductor also helps
detector during detection procedure 3 by generating original checksums of the
loaded modules of the guest OS as well as descriptions of each module, which
are used to detect smart rootkits that escape from procedure 1 and 2.

Registration. Registration component stores information of the guest OSes
provided by the administrator in registration procedure. It provides information
of the kernel to bridge semantic gap in the three steps of RootkitDet system. Be-
sides, it provides the necessary information of the kernel and legitimate modules
to help RootkitDet system separate rootkits.

Analyzer. Analyzer diagnoses the code of the detected rootkit by performing
static analysis to collect related characteristic information and attempts to cate-
gorize the detected rootkit heuristically. If the analyzer succeeds in categorizing
the rootkit by matching the characteristic information with the profiles of known
rootkits, it can finally perform recovery of the guest OSes.

The analyzer performs static analysis instead of dynamic analysis due to the
following reasons. First, dynamic analysis is not applicable in practice due to its
heavy overhead to guest OSes. Second, dynamic analysis requires the execution

End-to-End Defense against Kernel Rootkits in a Cloud Environment 481

of the code of rootkits to analyze its behavior while static analysis does not.
Finally, the characteristic information collected through static analysis is enough
in most cases although it is sketchy and rough.

In order to monitor multiple guest OSes simultaneously, we expands our sys-
tem into a scalable architecture as shown in Fig. 1. For each guest OS, we gener-
ate related meta-data of the kernel in advance, which includes: (1) system.map
which contains names and locations of the kernel symbols, (2) checksum of the
kernel code which is used to detect modifications to the running kernel code, (3)
definitions of important data structures that might be referred to by the rootk-
its or during recovery, (4) type information of important global variables and
dynamically allocated objects and their relationship in the kernel. Our system
takes advantages of the kernel’s meta-data to detect kernel-level rootkits and
perform recovery. Besides, only one kernel’s meta-data is necessary if all of the
guest OSes are using the same kernel. Furthermore, several guest OSes can also
runs on the same hypervisor if the hypervisor supports multiple guest OSes.

4 Design and Implementation of RootkitDet

In this section, we describe the system design and the implementation of the
prototype of RootkitDet system.

4.1 Detection

Registration procedure. As mentioned above, registration procedure com-
prises registration of the kernel and registration of the legitimate modules. When
the kernel of a guest OS is registered, we generate the meta-data of the kernel.
System.map is provided by the administrator of the guest OS. We compute the
original checksum of the kernel code by analyzing the binary file of the ker-
nel. Definitions of important data structures and type information of important
global variables and dynamic allocated objects are excerpts of the source code
of the kernel. By "important”, we mean the data structures and objects that
might be accessed directly or indirectly by known rootkits and that might be
accessed to recover modifications caused by known rootkits.

A module can be loaded either automatically by applications or manually by
the administrator. A module loaded into the kernel is identified by its name,
which is obtained from the filename of its original object file. To guarantee that
a legitimate module is not taken as a rootkit by our system, the module must
be registered before it is loaded into the kernel. When a module is registered, we
store its original object file with its original filename, and analyze it to extract
information of its exported symbols, which are useful when calculating original
checksums of modules that depend on it.

For the sake of efficiency and other purposes, self-modifying code might be
used in the kernel and modules to leverage advanced features of CPU, which we
need to take into account during the calculation of checksums. As self-modifying
code runs only in initialization stage of the kernel, we can compute all possible

482 L. Zhang et al.

checksums of the kernel code by creating temporary VM instances with registered
kernel and obtaining the kernel code after initialization stage. We generate the
checksum of a module by simulating the relocation process of the module, and
thus we replace customized instructions according to the state of the kernel to
generate the proper original checksum of this module.

Detection procedures. To detect rootkits that insert code into the kernel
space, our system performs three detection procedures as mentioned above. How-
ever, our system may raise false alarms in several situations. We discuss these
problems and present solutions as follows.

Under some particular conditions, inconsistency between the executable re-
gions and loaded modules may occur in the kernel of guest OSes, which causes
a false positive in detection procedure 1. Case I: When a module is loading,
the kernel allocates another executable region for its initialization code, which is
released immediately after the initialization code is executed. The temporary ex-
istence of initialization code of a module may cause a false positive. We confirm
the detection of rootkits only when the detector continuously reports rootkits
3 times. Case 2: When a module is unloaded, the kernel doesn’t release related
regions until the total size reaches a threshold. The lazy clean-up may also cause
false positive. We require a subtle modification to the kernel source code to re-
lease all free regions once a module is unloaded. This modification doesn’t affect
the efficiency of the kernel because unloading modules happens rarely in general.

Unused space usually exists below the code of a module because of the page-
aligned allocation of memory. As far as we know, the kernel doesn’t clear the
memory regions allocated for modules before loading modules into them. As a
result, the unused space may contain nonzero data, which cause a false positive
in detection procedure 2. To eliminate this kind of false positive, we require a
subtle modification to the kernel source code to clear the last page of memory
regions allocated for modules.

The code of a module varies with the relocation address of the module when it
is loaded into the kernel. We can’t leverage previous work [9] to compute check-
sums of modules in detection procedure 3 because the original object files of
modules are not required when the detector computes checksums in our system.
To reduce the work of the detector, the original checksums of modules are pro-
vided by the conductor. The detector computes current checksums of legitimate
code respectively, and compares them with original checksums. Any mismatch
means modifications to the legitimate code.

Detection procedures are performed periodically instead of being triggered like
Patagonix [15] due to the following reasons. First of all, the rootkits that are
erased immediately after executed are out the scope of this paper, so periodic
detection works properly in our system. Secondly, Patagonix also periodically
performs a refresh to set all pages non-executable. Thirdly, our system focuses
only on the kernel space instead of the space of all processes. The overhead of
periodical detection is small. Fourth, unused space of modules should be checked
although the pages are already legitimate to be executed. Finally, our system is
more flexible to adjust periods of detection procedures.

End-to-End Defense against Kernel Rootkits in a Cloud Environment 483

static struct dentry* adore_ proc_lookup(
struct inode *i,

mov $fs:0xcl416454, %eax
struct dentry* d,

inch 0x330 (%eax) cldle454 r-- current

struct namedata* nd) mov Ox8(%esp), %eax d0c0d4d4 r-- cl0e6al8
cEERI EEe 10) - c
{ mov %ebp, %ecx clOe6a08 x proc_root_lookup
o mov $edi, %$edx
task_unlock (current); call *0xd0cOd4d4
return orig proc lookup(i, d, nd);

Fig. 2. The example binary code snippet(middle), with its associated C snippet(left)
and associated output of static analysis

4.2 Diagnosis

To categorize the detected rootkit, we investigate well known typical rootkits
according to the intentions that rootkits achieve and the tactics that rootkits
adopt. For each typical rootkit, we generate a profile to describe its tactic to
achieve its intention as well as modified data structures and objects that we
should recover.

Generating the profiles. In our implementation, we generate profiles of typ-
ical rootkits manually due to the following reasons. First, rootkits may achieve
different intentions together, and understanding the intentions and related tac-
tics of rootkits requires manual effort. Second, data structures and objects that
are accessed in the same tactic might subtly vary with the kernel version. Third,
rootkits may implement the same tactic in different ways.

Using the profiles. To apply the profiles of known rootkits during diagnosis,
we translate the profiles into ones that coordinate with the kernel running in the
guest OS monitored by our system. Then the profiles of known rootkits are ready
to categorize the detected rootkit. Categorization is done by matching certain
characteristic information (collected from the detected rootkit) against the set
of pre-generated profiles.

RootkitDet system performs static analysis on the code of rootkit to collect
characteristic information. The characteristic information is divided into two
groups. One group is the control flow information. Usually, a rootkit calls to some
kernel functions to achieve its intentions, which we name external function calls.
The other group is the global variables and dynamically allocated data structures
accessed by the rootkit. In general, to access special data structure maintained by
the kernel, the rootkit has to find it starting from a global variable and tracking
down according to the relationship among different data structures. A global
variable is actually a kernel symbol and usually accessed by its address which
is constant. The characteristic information collected through static analysis is
binary. RootkitDet system translates the characteristic information according to
the meta-data of the kernel. Translated information is then used to categorize
the detected rootkit.

We extract the instructions of the rootkit’s code as discussed in Appendix 9.1,
and suppose that we have figured out the code of the rootkit. Next, we address
how we collect characteristic information of the rootkit through static analysis.
We focus on external function calls and memory access during static analysis in-
stead of the control flow of the code [7] [16]. Basically, what we need to do is to
determine the values of CPU registers during static analysis. We create a static

484 L. Zhang et al.

machine with a special CPU and stack to execute the code of rootkit statically.
First, we use a pair <val, flags> to represent the value of a register, in which val
represents the value while flags indicates validation of each byte of val. We up-
date the pair instead of the value of registers when we execute instructions. So
are the values on the stack. Therefore, we specially tackle instructions accessing
the stack. Second, when an instruction involves read of memory other than the
stack, we update val by the value of the memory and set flags by a value indicat-
ing wal totally valid. Finally, some instructions load hard-coded immediate values
into registers. In that case, we also update the flags of the target register accord-
ing to the size of immediate value and the instruction type. In consequence, the
values of registers that we can determine during static analysis are independent
of execution environments. In most cases, we can determine the external function
calls and accesses to global variables of the kernel, which we can use to infer the
behavior of the suspicious code. Fig. 2 presents an example.

4.3 Recovery

If RootkitDet system successfully categorize the detected rootkit, it attempts to
recover the infected kernel according to the profile of the rootkit. Data structures
and objects that are modified by the rootkit are described in the profile of the
rootkit. Combined with the meta-data of the kernel, recovery-driven profile is
derived from the profile of the rootkit. Recovery-driven profile describes how to
locate the modified data structures and objects and how to recover them.

As mentioned above, we usually know the expected values of the control data,
which are the locations of kernel functions. Therefore, the key to recover control
data is how to locate it. Data structures and objects maintained by the kernel
can always be found tracking down from some global variable. Moreover, the
address of global variables are constant and can be found in the meta-data of
the kernel. As a result, the recovery-driven profile for control data describes the
tracking path from the global variable to the object containing the control data.
For example, a rootkit may overwrite the pointers of functions registered with
the virtual file system layer by the pseudo random number generator (PRNG)
to disable the PRNG [17]. The pointers of functions registered by the PRNG
are stored in structures random fops and urandom fops, which are located in
the object devlist, a list of memory devices that is a global variable. Therefore,
the recovery-driven profile for the functions registered by PRNG contains the
address of devlist, offsets of random fops and urandom fops in devlist as well as
the real addresses of the functions registered by the PRNG.

Non-control data is different because the original values are either lost forever
or not easy to calculate. Moreover, non-control data is different in the way to
locate the related data structures or objects. For example, a rootkit hides a
process by removing related item from the pid hash table. Then we can’t find
the process tracking down from the pid hash table. The only way to find the
process is tracking down from init task and checking each process whether it is
not linked into the pid hash table. As a result, the recovery-driven profile for
non-control data describes how to restore the broken links or resolve violations

End-to-End Defense against Kernel Rootkits in a Cloud Environment 485

of invariants as well as the tracking path from the global variable to the object
containing the non-control data. If the original value of a non-control data are
lost forever, we can not recover it. For example, we can not recover the entropy
pool of PRNG if it is zeroed by a rootkit [17].

4.4 Implementation

In our implementation, we use gemu-kvm-1.2.0 for creating instances of the guest
OS, and compile linuz-2.6.32.60 for the guest kernel. Fig. 3 shows the internal
components of the prototype of RootkitDet system.

Detector. We integrated the detector into gemu-kvm because the guest OSes
are running as user processes on the host OS and the integration reduces inter-
process communications. Moreover, we implement the inspector as part of the
detector.

The detector consists of five components:
inspector, data container, hash component,
control component and communication com-
ponent. Inspector is responsible for reading
the registers and memory of the VM. Data
container component constructs the neces-
sary semantic data structures from the raw
data of the VM’s memory given by inspector
according to the profile, and also stores data — :
coming from the conductor through com- ‘ ‘
munication and control components. Hash Fig.3. Internal Components of
components is used for calculating the cur- RgotkitDet
rent hash values for the kernel and modules’
code. The communication component takes care of all of the communication with
the conductor. The control component receives commands through the commu-
nication component from the conductor, then executes the commands and sends
the response back to the conductor.

For the sake of flexibility, we implement the detector as a command-driven
object, which is an I/O handler of gemu-kvm. It doesn’t do anything until it
receives a command from the conductor, and it goes back to the initial state as
soon as it finishes that command. If the conductor doesn’t send any commands
to the detector, the VM runs the same as if there is no detector. Therefore, it is
convenient for us to turn off/on this security feature of the VM when necessary.

Conductor. The conductor is a daemon process that periodically schedules
detectors for monitored guest OSes and starts up the analyzer when rootkits are
detected. It is also responsible for generation of original checksums of registered
modules when requested.

To generate the original checksums of kernel modules, the conductor performs
the same relocation work as the guest kernel does. The correct relocation work
of a module depends on the following information: the original object file, the
relocation address, the addresses of the used kernel symbols and the addresses
of the used symbols of other modules. The conductor acquires the original ob-

Analyzer

known

rootkits Y™

Inspector

Detector

Daa Contamer
Exce-region list
Component | | Nodule-list
Name
Original hash
Hash Current hash

Tauoduion
uoneomnuI)

486 L. Zhang et al.

ject file of a module from the registration component and obtains its relocation
address from the detector. The conductor can figure out the address of a kernel
symbol by referring to the meta-data of the kernel. We create a database storing
the relative addresses of symbols exported by registered modules. The conductor
can calculate the absolute address of a symbol exported by a module by looking
it up in the database and adding it up to the relocation address of the mod-
ule. To resolve the potential dependency among modules during the relocation
work, the conductor calculates original checksums after collecting the relocation
addresses of all loaded modules from the detector. Consequently, the conductor
can generate original checksums for all of the loaded modules and send them
back to the detector.

We generate the original checksum of the kernel code in advance because the
kernel code is constant and never changes after it starts up. We take the original
checksum of the kernel code as part of the meta-data of the kernel.

Analyzer. The analyzer is actually an independent program in our prototype
system, and is started up by the conductor when the detector reports that a
rootkit is detected. Therefore, we save the resources consumed by the analyzer
if no rootkits are detected, which is tenable in most times.

Once the detector reports that a rootkit is detected, the conductor starts
up the analyzer immediately. Analyzer collects the characteristic information
through static analysis, translates combining the meta-data of the kernel, and
attempts to categorize the rootkit according to profiles of known rootkits. If
it successfully categorizes the rootkit, it recovers modified data structures and
objects according to the recovery-driven profile of the rootkit.

5 Evaluation of RootkitDet System

In this section, we present the evaluation results of our RootkitDet prototype.
Our evaluation has two goals. The first goal is to evaluate RootkitDet’s effec-
tiveness for detecting kernel-level rootkits that compromise the code integrity of
the OS kernel and recovering modified data to eliminate the effect of rootkits.
The second goal is to measure the overhead introduced to guest OSes and extra
resources consumed by RootkitDet.

All experiments are conducted on Dell PowerEdge M610 Server with a
2.40GHz Intel Xeon E5645 and 6GB memory. The hypervisor is gemu-kvm-1.2.0.
The host OS is Ubuntu-12.04. We used Debian-squeeze with kernel version 2.6.32
as our guest OS. The detector is integrated into gemu-kvm, and thus runs with
the guest OS. The conductor ran on another computer as a user process. They
communicated with each other through TCP connections.

5.1 Effectiveness

To evaluate the effectiveness of RootkitDet system for detecting kernel-level
rootkits, we install four representative rootkits in the guest OS monitored by our
system. As shown in Table 1, different detection procedures detect the rootkits
that hide the code in different regions.

End-to-End Defense against Kernel Rootkits in a Cloud Environment 487

/
/

clann /
/
/
/
malicious code.

Systemmap Malicious code systemma » Malicious code Maiicious code

Systemmap

Fig.4. hksc: hooking Fig.5. hkproc: hooking Fig.6. hidepc: manipulat-
sys write proc filesystem ing pid hash table

Adore-ng [18] is implemented as kernel module and an extra executable
region appears when it is installed. Therefore, it is detected by procedure 1.
Enyelkm [19] is also implemented as a kernel module and thus detected by pro-
cedure 1. In addition, it also hijacks the control flow of the kernel by modifying
the system call dispatch routine to intercept several system calls, and thus it is
also detected by procedure 3. Despite of the probability that a rootkit’s code
resides in dynamically allocated executable regions or unused space of mod-
ules, we don’t find one in wild. We implement Icmp-cmd and Icmp-cmd v2,
which execute commands specified by crafted ICMP packets, to evaluate the
RootkitDet’s effectiveness in detecting such rootkits. The code of them resides
in a dynamically allocated executable region and unused space of a module, and
thus they are detected by procedure 1 and 2 respectively.

To evaluate the effective-

ness of RootkitDet system Table 1. Rootkit detection

for eliminating the effect of

rootkits, we develop 3 rootk- Rootkit Method to insert code DP
its, hkSC, hka‘OC and hidepc, adore_ng module 1
which adopt different tactics enyelkm module and substitution 1, 3
to hide a specific user process icmp-cmd executable region 1
from the guest system admin- icmp-cmd v2 unused space 9

istrators, and install them in

the guest OS monitored by our

system. After detection of them, our system successfully categorizes them and
performs recovery to reveal the hidden process.

Fig. 4 shows a rootkit hijacking sys write system call to hide a specific process
by tampering with what is displayed to the administrators of guest OSes. We
recover the modified system call table to eliminate the effect of this rootkit. Fig.
5 shows a rootkit hooking the function pointer proc root readdir to hide a specific
process by removing related pid entry in the proc file system. We find the hooked
function pointer by tracking down from proc fs type, which is a global variable,
and correct it with the real location of kernel function proc root readdir. Fig. 6
shows a rootkit hiding a specific process by removing related entry in the pid

488 L. Zhang et al.

Table 2. Application-level benchmarks of overhead to guest OSes

Benchmark W /o Performance W/i Performance Relative Performance
Dhrystone 6040580.1 Ips 6045164.7 Ips 1.001X
Whetstone 630.6 MIPS 629.9 MIPS 0.999X
Lmbench(pipe bandwidth) 3843.2 MB/s 3810.3 MB/s 0.991X
Apache Bench(throughput) 569.95 KB/s 568.67 KB/s 0.998X
Kernel decompression 21.343 s 21.529 s 0.991X
Kernel build 1300.4 s 1292.9 s 1.001X

Table 3. Time of detection and recovery

Rootkit Code size(byte) detection time(ms) analysis time(ms) recovery time(ms)

hksc 407 <1 14.6 3.7
hkproc 978 <1 44.6 7.7
hidepc 565 <1 29.1 204.8

hash table. We first find the task struct of the hidden process by tracking down
from init task, and then relink it into the pid hash table to reveal the hidden
process.

5.2 Overhead to the Guest OSes

To measure the performance cost introduced by our system to the guest OS, we
run a set of application benchmarks to compare the performance of a guest OS
that enables the detector with the one that does not. The application benchmarks
and their configuration are presented as follows: 1) Dhrystone 2 of the UnixBench
suite using register variables. 2) Double-precision whetstone of the UnixBench.
3) Pipe bandwidth of Lmbench measuring the performance of IPC interface
provided by the kernel. 4) Apache Bench configured to issue 10,000 http requests
(177B HTML file) through 1 client. 5) Kernel source code decompression using
command tar xjf to extract the compressed tarball file of Linux 2.6.32 kernel.
6) Building a Linux 2.6.32 kernel.

We run detection procedure 1 in each second, procedure 2 in 4 seconds, pro-
cedure 3 in 16 seconds because of different complexity of them. Table 2 presents
the results of these application level benchmarks. The second column shows the
performance of the guest OS which doesn’t enable the detector, while the third
column shows the performance of the guest OS that enables the detector. The
last column presents the relative performance. To reduce the effect of random
factors, we run each benchmarks 10 times, and present the average results in the
table. From table 2, we can see that the relative performance of the guest OS
that enables the detector is above 0.99X, on both CPU intensive jobs and 1/0
intensive jobs. In other words, the performance cost is tolerable to most tasks.

Besides application level benchmarks, we also perform a micro-benchmark test
on the detector. In the experiment result, detection procedure 1 costs the least

End-to-End Defense against Kernel Rootkits in a Cloud Environment 489

time, which is 189 us; detection procedure 2 costs more time, which is 713us;
detection procedure 3 costs the most time, which is 47139 us.

5.3 Performance

To measure the scalability of our system, we run multiple VM instances that
enable the detector at the same time and measure the network bandwidth and
CPU resources consumed by our system, i.e. the conductor. Fig. 7 shows the peak
and average network bandwidths (input and output) consumed by the conductor
are linear to the quantity of the VM instances. In addition, our system consumes
3% CPU cycles for every 10 guest OSes. As a result, our is scalable and efficient
in the cloud environment.
To measure the efficiency of our)))

R —e— Peak output
system, we measure the time of detec- 10| | _a Average output
tion and recovery against the 3 rootk- —e— Peak input
its that hide a specific user process in 8[| Average input
the guest OS. Table 3 shows the eval-
uation result. The time of detection
is less than 1 ms because the rootk-
its are implemented as modules which
are detected by detection procedure
1. The time of analysis depends on oL L L | | L -
the code size and pages of memory ac-
cessed by the code. The time of recov-
ery mainly depends on the complexity Fig.7. Network bandwidth consumed by
of recovery. Conductor

Network bandwidth(KB/s)
[=2]
T

Quantity of VM instances

6 Related Work

Kernel-level rootkits have been distributed in the underground hacker commu-
nity for a long time [20]. In order to relieve the threat of kernel-level rootkits,
many techniques or architectures are proposed. Most recently techniques or ar-
chitectures leverages the security benefit of the hypervisor. They can be divided
into 4 classes: (1) Detecting data modifications or violations of invariants in the
kernel; (2) Preventing the installation of the rootkits by performing analysis on
the code being loaded into the kernel space; (3) Defending kernel rootkits by
cooperating with anti-malware software; (4) Protecting the kernel by restoring
infected kernels to healthy state.

In class 1, SBCFI [5] detects persistent kernel control-flow attacks by iden-
tifying function pointers in kernel data structures to the kernel and modules’
code. HookSafe [6] protects thousands of kernel hooks in a guest OS from being
hijacked. Gibraltar et al [3] detects kernel rootkits by identifying data invariants
in the kernel. The work of Petroni Jr et al [4] focuses on semantic integrity vio-
lations in kernel dynamic data. While these works focus on control/non-control
data in the kernel, our system focuses on the code inserted into kernel space and
attempts to perform recovery.

490 L. Zhang et al.

In class 2, the work of C. Kruegel et al [7] performs static analysis on the mod-
ule that is being loaded and prevents it if it resembles the behavior of rootkits.
Liveware [21] protects the guest OS kernel code and critical data structures from
being modified. Our system improves by detecting the code added into the ker-
nel space that is not in the form of a module. SecVisor [8], a tiny hypervisor
that enforces page-level protection of the memory used by the code of the kernel
and modules, prevents the installation of the kernel rootkits by ensuring the
code integrity of guest OS kernel. NICKLE [9] protects the code integrity in
the guest OS kernel by transparently routing guest kernel instruction fetches to
shadow memory which contains authenticated code and is protected from write-
access. However, they are not easy to be adopted in the cloud platforms based
on different hypervisors because they require special features of the hypervisor.

VMWatcher [11] detects malware by providing semantic view of the guest OS
to anti-malware software, and Lares [10] presents an architecture that gives the
security tools the ability to do active monitoring. While they are cooperated with
external security tools or anti-malware software, our system can defend rootkits
alone and monitor more VMs with less effort.

VICT Agent [12], which belongs to class 4, applies different repair techniques
to restore the infected kernel to healthy state after detecting kernel-modifying
rootkit infections. However, it can be defeated by novel rootkits that insert new
control-data in the kernel space instead of modifying existing control-data, such
as Iemp-cmd mentioned in Section 5.

7 Discussions and Limitations

RootkitDet system is not perfect because of the following reasons. First, it can-
not detect rootkits that are erased immediately after executed or that have no
specific code in the kernel space, like return-oriented rootkits [22]. Second, it
may not detect all of the code of a rootkit if the rootkit hides part of its code
by switching NX-bit of the corresponding pages, therefore our system may lose
some characteristic information of the rootkit during analysis. Third, it cannot
prevent the installation of the kernel-level rootkits although it detects rootkits
and recovers the kernel if possible. Fourth, it cannot certainly recover all mod-
ifications made by the rootkits, especially when categorization of the rootkits
fails. Finally, the generation of instinct information of rootkits are not auto-
matic. However, RootkitDet system are still useful and flexible in practice. In
addition, it can perform quickly detection of kernel-level rootkits by only issuing
detection procedure 1 and 2 because almost all of kernel-level rootkits in the wild
introduce extra code into the kernel space and fewer and fewer of them modify
the code of the kernel or modules. RootkitDet system provides the characteristic
information of unknown rootkits to assist further investigation.

In future work, we can focus on the analysis and recovery of novel and un-
known rootkits and automatic generation of rootkits’ instinct information.

End-to-End Defense against Kernel Rootkits in a Cloud Environment 491

8 Conclusions

In this paper, we present the design, implementation and evaluation of the
RootkitDet system, an end-to-end defense against kernel-level rootkit, which
is efficient and practical in the cloud environment. RootkitDet system detects
rootkits that insert code into kernel space of guest OSes, diagnoses the detected
rootkit to precisely locate modifications caused by the rootkit, and attempts to
recover the modifications. Our evaluation experiments show that the Rootkit-
Det system can effectively detect kernel-level rootkits and reverse modifications
if the rootkits are categorized successfully. In addition, the performance cost in-
troduced to the guest OSes by our system is less than 1%, and the complexity
of our system is linear with the quantity of the VM instances being monitored,
which is acceptable in the cloud environment.

Acknowledgments. We thank the anonymous reviewers and our shepherd, Ste-
fano Paraboschi for their constructive feedback to improve the paper. Lingchen
Zhang was supported by ARO grant W911NF-12-1-0055. Sachin Shetty was
supported by ARO grant W911NF-12-1-0055, NSF grant HRD-1137466, DHS
grants 2011-ST-062-0000046 and 2010-ST-062-0000041. Peng Liu was supported
by AFOSR W911NF1210055, ARO W911NF-09-1-0525, NSF CNS-1223710, and
ARO W911NF-13-1-0421. Jiwu Jing was partially supported by the National 973
Program of China under award No.2014CB340603 and the National 863 Program
of China under award No.2013AA01A214.

References

1. McAfee: Rootkits, Part 1 of 3: A Growing Threat. white paper (April 2006)

2. McAfee: 2010 Threat Predictions. white paper, McAfee AVERT Labs (December
2009)

3. Baliga, A., Ganapathy, V., Iftode, L.: Detecting kernel-level rootkits using data
structure invariants. IEEE Transactions on Dependable and Secure Comput-
ing 8(5), 670-684 (2011)

4. Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of the 15th USENIX Security Symposium, pp. 289-304 (2006)

5. Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security, pp. 103-115. ACM (2007)

6. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 545-554. ACM (2009)

7. Kruegel, C., Robertson, W., Vigna, G.: Detecting kernel-level rootkits through
binary analysis. In: 20th Annual Computer Security Applications Conference 2004,
pp. 91-100. IEEE (2004)

8. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. In: ACM SIGOPS Operating
Systems Review, vol. 41, pp. 335-350. ACM (2007)

492 L. Zhang et al.

9. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1-20. Springer, Heidelberg (2008)

10. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure
active monitoring using virtualization. In: IEEE Symposium on Security and Pri-
vacy, SP 2008, pp. 233-247. IEEE (2008)

11. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based out-
of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, pp. 128-138. ACM (2007)

12. Fraser, T., Evenson, M.R., Arbaugh, W.A.: Vici-virtual machine introspection for
cognitive immunity. In: Annual Computer Security Applications Conference, AC-
SAC 2008, pp. 87-96. IEEE (2008)

13. Kemerlis, V.P., Portokalidis, G., Keromytis, A.D.: kguard: lightweight kernel pro-
tection against return-to-user attacks. In: USENIX Security Symposium (2012)

14. Linux-KVM: Linux-KVM, http://www.linux-kvm.org/page/Main_Page

15. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Conference on Security Symposium,
pp. 243-258 (2008)

16. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp. 156-168. IEEE
(2001)

17. Baliga, A., Kamat, P., Iftode, L.: Lurking in the shadows: Identifying systemic
threats to kernel data. In: IEEE Symposium on Security and Privacy, SP 2007, pp.
246-251. IEEE (2007)

18. Stealth: Announcing full functional adore-ng rootkit for 2.6 kernel,
http://lwn.net/Articles/75991/

19. eNYe Sec: eNYeLKM v1.1, http://wuw.enye-sec.org/en/tags/enye-1km/

20. Halflife: Abuse of the Linux-kernel for Fun and Profit. Phrack Magazine 5(50)
(April 1997)

21. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proc. Network and Distributed Systems Security Sym-
posium (2003)

22. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: Proceedings of the 18th USENIX Security
Symposium, pp. 383-398 (2009)

9 Appendix

9.1 Extracting Instructions

When a rootkit is detected by our system, we get a suspicious executable region
where the code of the rootkit locates. To analyze the rootkit’s code, we need
extract instructions of the rootkit’s code from the executable region first. The
executable region is page-aligned and we don’t know the exact location of the
rootkit’s code. Moreover, it is non-trivial task to distinguish code from data
on X86 platforms. Therefore, it is difficult to find out the rootkit’s code in the
detected executable regions.

http://www.linux-kvm.org/page/Main_Page
http://lwn.net/Articles/75991/
http://www.enye-sec.org/en/tags/enye-lkm/

End-to-End Defense against Kernel Rootkits in a Cloud Environment 493

We notice that the code of rootkits usually comprises a set of functions and
the instructions are continuous unless a jump instruction occurs. Several suc-
cessive instructions of a function compose an instruction block ending with a
branch, jump, call or return instruction. If an instruction block ends with a re-
turn instruction, no more blocks follows it in logic. If a block ends with a call
instruction, the next block starts right behind the call instruction. If a block
ends with a jump instruction, the address of the following block can be calcu-
lated from the address of the jump instruction and its content. If a block ends
with a branch instruction, two blocks follow it in logic: one is just behind it
and the starting address of the other can be calculated from the address of the
branch instruction and its content.

Consequently, we can figure out all of the instruction blocks of a function as
long as we find the first block. That is to say, we should find the first instruction of
a function. We search the first instruction from the first byte of the executable
region which starts at the lowest address if multiple regions exist. If the first
instruction starts here, we can figure out the whole function. Otherwise, we
should encounter an illegal instruction in all probability during the process of
extracting instruction blocks. If it is not the first instruction, we march on by
one byte. We repeat this step until we figure out the first instruction.

	RootkitDet: Practical End-to-End Defense
against Kernel Rootkits in a Cloud Environment
	1 Introduction
	2 Threat Model and Assumptions
	2.1 Threat Model
	2.2 Assumptions

	3 Overview of RootkitDet System
	3.1 Overview
	3.2 Architecture

	4 Design and Implementation of RootkitDet
	4.1 Detection
	4.2 Diagnosis
	4.3 Recovery
	4.4 Implementation

	5 Evaluation of RootkitDet System
	5.1 Effectiveness
	5.2 Overhead to the Guest OSes
	5.3 Performance

	6 Related Work
	7 Discussions and Limitations
	8 Conclusions
	References
	9 Appendix
	9.1 Extracting Instructions

