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RootKitDet- Scalability

• In order to monitor multiple guest OSes simultaneously, we 
expands our system into a scalable architecture

• For each guest OS, we generate related meta-data of the 
kernel in advance, which includes: 
– (1) system.map which contains names and locations of the kernel 

symbols, 

– (2) checksum of the kernel code which is used to detect modifications 
to the running kernel code, 

– (3) definitions of important data structures that might be referred to 

by the rootkits or during recovery, 
– (4) type information of important global variables and dynamically 

allocated objects and their relationship in the kernel. 
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RootKitDet: Scalability 

• Our system takes advantages of the kernel’s meta-data to 
detect kernel-level rootkits and perform recovery.

• Besides, only one kernel’s meta-data is necessary if all of the 
guest OSes are using the same kernel

• Furthermore, several guest OSes can also runs on the same 
hypervisor if the hypervisor supports multiple guest OSes.



RootkitDet: Detection Procedure 
Challenges

• Under some particular conditions, inconsistency between the 
executable regions and loaded modules may occur in the 
kernel of guest OSes, which causes a false positive in 
detection procedure 1. 

• Case 1:  When a module is loading, the kernel allocates 
another executable region for its initialization code, which is 
released immediately after the initialization code is executed. 
– The temporary existence of initialization code of a module may cause 

a false positive. 

– We confirm the detection of rootkits only when the detector 
continuously reports rootkits 3 times. 



RootkitDet: Detection Procedure 
Challenges

• Case 2:  When a module is unloaded, the kernel doesn’t 
release related regions until the total size reaches a threshold. 

• The lazy clean-up may also cause false positive. 

• We require a subtle modification to the kernel source code to 
release all free regions once a module is unloaded. 

• This modification doesn’t affect the efficiency of the kernel 
because unloading modules happens rarely in general.



RootkitDet: Detection Procedure 
Challenges

• Case 3: Unused space usually exists below the code of a 
module because of the pagealigned allocation of memory. 

• As far as we know, the kernel doesn’t clear the memory 
regions allocated for modules before loading modules into 
them. 

• As a result, the unused space may contain nonzero data, 
which cause a false positive in detection procedure 2. 

• To eliminate this kind of false positive, we require a subtle 
modification to the kernel source code to clear the last page 
of memory regions allocated for modules.



RootkitDet: Detection Procedure 
Challenges

• The code of a module varies with the relocation address of 
the module when it is loaded into the kernel. 

• We can’t compute checksums of modules in detection 
procedure 3 because the original object files of modules are 
not required when the detector computes checksums in our 
system.

• To reduce the work of the detector, the original checksums of 
modules are provided by the conductor

• The detector computes current checksums of legitimate code 
respectively, and compares them with original checksums. 
Any mismatch means modifications to the legitimate code.



RootkitDet: Detection Procedure 

• Detection procedures are performed periodically instead of 
being triggered like Patagonix

• Rootkits that are erased immediately after execution are out 
the scope of the system, 

• RootkitDet focuses only on the kernel space instead of the 
space of all processes. 

• Overhead of periodical detection is small. 

• Unused space of modules should be checked lthough the 
pages are already legitimate to be executed. 

• RootkitDet more flexible to adjust periods of detection 
procedures.



RootkitDet: Diagnosis

• To categorize the detected rootkit, we investigate well known 
typical rootkits according to the intentions that rootkits 
achieve and the tactics that rootkits adopt. 

• For each typical rootkit, we generate a profile to describe its 
tactic to achieve its intention as well as modified data 
structures and objects that we should recover.



RootkitDet: Diagnosis

• Generate profiles of typical rootkits manually due to the 
following reasons. 

• First, rootkits may achieve different intentions together, and 
understanding the intentions and related tactics of rootkits 
requires manual effort. 

• Second, data structures and objects that are accessed in the 
same tactic might subtly vary with the kernel version.

• Third, rootkits may implement the same tactic in different 
ways.



RootkitDet: Diagnosis

• To apply the profiles of known rootkits during diagnosis, we 
translate the profiles into ones that coordinate with the kernel 
running in the guest OS monitored by our system. 

• Then the profiles of known rootkits are ready to categorize 
the detected rootkit. 

• Categorization is done by matching certain characteristic 
information (collected from the detected rootkit) against the 
set of pre-generated profiles.



RootkitDet: Diagnosis

• RootkitDet system performs static analysis on the code of 
rootkit to collect characteristic information. 

• The characteristic information is divided into two groups.
– One group is the control flow information. Usually, a rootkit calls to 

some kernel functions to achieve its intentions, which we name 
external function call  s.

– The other group is the global variables and dynamically allocated data 
structures accessed by the rootkit. In general, to access special data 
structure maintained by the kernel, the rootkit has to find it starting 
from a global variable and tracking down according to the relationship 
among different data structures. 



RootkitDet: Diagnosis

• A global variable is actually a kernel symbol and usually 
accessed by its address which is constant. 

• The characteristic information collected through static 
analysis is binary.

• RootkitDet system translates the characteristi information 
according to the meta-data of the kernel. 

• Translated information is then used to categorize the detected 
rootkit.



RootkitDet: Diagnosis

• We extract the characteristic information of the rootkit 
through static analysis.

• We focus on external function calls and memory access during 
static analysis instead of the control flow of the code. 

• Determine the values of CPU registers during static analysis. 

• We create a static machine with a special CPU and stack 

to execute the code of rootkit statically.



RootkitDet: Diagnosis

• First, we use a pair < val, flags>  to represent the value 

of a register, in which val represents the value while flags  

indicates validation of each byte of val . 

• We update the pair instead of the value of registers 

when we execute instructions. 

• Second, when an instruction involves read of memory 

other than the stack, we update val by the value of the 

memory and set flags  by a value indicating val totally 

valid. 

• Finally, some instructions load hard-coded immediate 

values into registers. 



RootkitDet: Diagnosis

• In that case, we also update the flags  of the target 

register according to the size of immediate value and the 

instruction type. 

• In consequence, the values of registers that we can 

determine during static analysis are independent of 

execution environments. 

• In most cases, we can determine the external function 

calls and accesses to global variables of the kernel, 

which we can use to infer the behavior of the suspicious 
code



RootkitDet: Diagnosis

• Example binary code snippet(middle), with its associated C 
snippet(left) and associated output of static analysis



RootkitDet: Recovery

• RootkitDet attempts to recover the infected kernel according 
to the profile of the rootkit. 

• Data structures and objects that are modified by the rootkit 
are described in the profile of the rootkit.

• Combined with the meta-data of the kernel, recovery driven 
profile  is derived from the profile of the rootkit.

• Recovery-driven profile describes how to locate the modified 
data structures and objects and how to recover them.



RootkitDet: Recovery: Control Data

• Expected values of the control data are locations of kernel 
functions. 

• Data structures and objects maintained by the kernel can 
always be found tracking down from some global variable. 

• Address of global variables are constant and can be found in 
the meta-data of the kernel. 

• Recovery-driven profile for control data describes the tracking 
path from the global variable to the object containing the 
control data.



RootkitDet: Recovery: Control Data

• For example, a rootkit may overwrite the pointers of functions 
registered with the virtual file system layer by the pseudo 
random number generator (PRNG) to disable the PRNG [17]. 

• The pointers of functions registered by the PRNG are stored in 
structures random fops  and urandom fops , which are located 
in the object devlist , a list of memory devices that is a global 
variable. 

• Recovery-driven profile for the functions registered by PRNG 
contains the address of devlist , offsets of random fops  and 
urandom fops  in devlist as well as the real addresses of the 
functions registered by the PRNG.



RootkitDet: Recovery: Non Control 
Data

• Non-control data is different because the original values are 
either lost forever or not easy to calculate.  

• Non-control data is different in the way to locate the related 
data structures or objects. 

• For example, a rootkit hides a process by removing related 
item from the pid hash  table. 

• Then we can’t find the process tracking down from the pid
hash  table. 

• The only way to find the process is tracking down from init
task  and checking each process whether it is not linked into 
the pid hash  table. 



RootkitDet: Recovery: Non Control 
Data

• As a result, the recovery-driven profile for non-control data 
describes how to restore the broken links or resolve violations 
of invariants as well as the tracking path from the global 
variable to the object containing the non-control data. 

• If the original value of a non-control data are lost forever, we 
can not recover it. 

• For example, we can not recover the entropy pool of PRNG if 
it is zeroed by a rootkit



RootkitDet: Design Requirements

• Scalable. 
• RootkitDet should support detection of kernel-level rootkits on multi-

VMs, 

• Low overhead.
• Performance is critical in cloud environment because the cost a cloud 

user should pay depends on the resources that he consumes. 

• Easy to adopt. 
– Xen[23] and KVM[12] are both used to create VMs in the cloud, It 

should be easy to deploy RootkitDet system in the cloud base on both 
Xen and KVM. 



RootkitDet: Detection Method

• Procedure 1 - Detect whether extra executable regions exist in 
the kernel space.

• Procedure 2 - Detect whether some code resides in unused 
spaces of modules.

• Procedure 3 - Detect whether the code of kernel or modules 
are modified.

• We can conclude that kernel-level rootkits exist if and only if 
any of the procedures above comes true. 

• The only precondition is that the NX feature is enabled.



RootkitDet: Detection Method

• As we know, the kernel runs in a VM, so this precondition only 
depends on the settings of the physical machine and the 
kernel in the VM can not change it. 

• In addition, we only read some registers and memory of the 
VM in all of the three procedures. 

• We neither monitor the execution of the VM nor keep watch 
on some registers or memory of the VM.

• As a consequence, the overhead of this detection method is 
pretty low



RootKitDet Design Summary

• RootkitDet system consists of one conductor and multiple 
detectors. 

• Conductor runs on the host OS as a user space process.
– Communicates with all of the detectors through IPC.

– Sends detection commands to the detectors, and receives responses 
back. 

– If rootkits are detected, it raises alert. 

• Detector detects kernel-level rootkits in a VM by reading its 
registers and memory. 
– In order to conveniently access the VM’s registers and memory, the 

detector is integrated into the qemu-kvm hypervisor



RootKitDet Design Summary

• Registration procedures

– Registration of kernel

– Registration of loadable kernel modules (LKMs)

• Detection procedures

– Detect extra executable regions in kernel space

– Detect code residing in unused space of LKMs

– Detect malicious modifications to legitimate code

• Challenges

– Inconsistency of executable regions when LKM is unloaded

• Kernel frees unused virtual memory area in a lazy manner

– Module’s code is variable due to the relocation

• Relocation address and symbols of itself

• Symbols of main kernel, even other modules



RootKitDet Design Summary

• Static analysis
– Characteristic information of detected rootkits

• External function calls

• Global variables and dynamically allocated objects accessed by the code

• Categorization
– Profiles of known rootkits

• The tactic adopted by the rootkit to achieve its intention

• Data structures that are modified according to its tactic

– Detail the profiles

• Translate symbols into addresses according to the running kernel



RootKitDet Design Summary

• Recovery-driven profile
– Derived from the profile of the rootkit and meta-data of the running 

kernel

• Recovery of control data
– Expected values are constant and known

– Tracking down from some global variable

• Recovery of non-control data
– Expected values can be inferred if logical relations among non-control 

data and other objects in the kernel


