All You Ever Wanted to Know About Virtual Machine Introspection:

The Semantic Gap Challenge

Zhigiang Lin

Department of Computer Sciences
The University of Texas at Dallas

August 24t 2015

The Road Map
oo ewtos |

‘What hypervisor observes

Guest-0OS

Assisted

Data-structure Debug-Info Source-Code Binary-Code

\
\

With diffe,lent constrain

|

The Semantic Gap

Compiler-Assisted Binary Analysis

‘ Approaches

What we want

Intrusion In n Kernel Malware Memory 0s
Detection revention Integrity Analysis Forensics Management

Applications

Deployment

Outline

@ The Semantic Gap
e What We Observe

e What We Want

Q Summary

@ The Semantic Gap

The Semantic Gap
e0

The Semantic Gap

ei=@ 99

Operating Systems

The Semantic Gap
e0

The Semantic Gap

ez@0W

Heap

Kernel g»@—i@m& -0

Operating Systems

The Semantic Gap
e0

The Semantic Gap

e11@ 0%

emel - B> @312 >0

Operating Systems

Virtualization Layer

The Semantic Gap
e0

The Semantic Gap

ATEE

emel - B> @312 >0

Operating Systems

Guest 010100110101001101010011
111100101111001011110010
110101101101011011010110
011010100110101001101010

Virtualization Layer

Kernel
Heap

The Semantic Gap
e0

The Semantic Gap

ATEE

emel - B> @312 >0

Operating Systems

Guest 010100110101001101010011
111100101111001011110010
110101101101011011010110 =%
011010100110101001101010 A

Virtualization Layer

Kernel
Heap

The Semantic Gap
e0

The Semantic Gap

emel - B> @3> 12 >0

/ Operating Systems /

/

G {10100110101001101010011I

Kernel 111100101111001011110010 [

Heap 110101101101011011010110 =4
011010100110101001101010

Virtualization Layer

The Semantic Gap
e0

The Semantic Gap

emel - B> @3> 12 >0

/ Operating Systems /

Guest PLO10GHLC = 001101010011

Kernel 0820 1% 001011110010

Heap luloﬂ %1011010110 "’\\
0110108 01 8%1001101010

Virtualization Layer

The Semantic Gap
e0

The Semantic Gap

emel - B> @312 >0

/ﬁl} Operating Systems/
5
5
(%1

Guest PLO.0E3lC > 001101010011
Kernel o510 001011110010

- Lmloﬂmﬁlollomno —a
P 01101058 01 #1001101010 A)

Virtualization Layer

The Semantic Gap

e0

The Semantic Gap

ez@0W

Kernel & _j@_) s
Heap e—-»¢ ==
/ %} Operating Systﬂg}/

0

Guest PLO.0EylC =7 00110101

Kernel o#010% 001011110010

- Lmloﬂ 1%10 11010110 =%
P 01101058 01 #1001101010 A)

Virtualization Layer

The Semantic Gap
oe

The Semantic Gap

@ The primary advantage that in-VM systems have is their
direct access to all kinds of OS-level abstractions.
However, when using a hypervisor, access to all of the rich
semantic abstractions inside the OS is lost.

@ Although hypervisors have a grand view of the entire state
of the VMs they monitor, this grand view unfortunately
consists of just ones and zeros with no context.

@ Therefore, there is a semantic gap between what we can
observe and what we want, and we must bridge it in
order to provide effective monitoring services.

The Semantic Gap
[]

The Semantic Gap in Out-of-VM (

Linux
Introspection N "
Files] MySQL
=\ Product-VM Semantic Gap
v

I |

The Semantic Gap
[]

The Semantic Gap in Out-of-VM (

Linux
Introspection N o b
Files) MySCQL
=\ Product-VM Semantic Gap

I |

@ View exposed by Virtual Machine Monitor is at low-level

@ There is no abstraction and no APls

@ Need to reconstruct the guest-OS abstraction

The Semantic Gap
[]

Example: Inspect pids of Guest Memory from VMM

32-bit General-Purpose Registers

EAX ER 00001800 eb 40 1b 02 63 74 00 fO 00 00 00 00 00 00 00 00
EBX Esp 00001810 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 00
Eox =0 00001820 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00
EoX = 00001830 00 00 00 00 00 00 00 00 10 76 16 cc 00 00 00 00
00001840 00 19 66 8c d0 50 b8 08 00 00 00 66 8e dO 53 8b

00001850 d9 Ff 2d 19 02 00 00 OFf 20 cO OF ba O 1f OF 22

16-bit Segment Registers 00001860 CO eb 00 b9 80 00 00 cO OF 32 OF ba f0 08 OF 30

EFLAGS Es 00001870 OF 20 e0 OF ba 0 05 Of 22 e0 60 9c 8b d3 cl ea
FS 00001880 04 89 a3 76 02 00 00 OF 01 83 80 02 00 00 OF 01

T es | 00001890 8b 88 02 00 00 8b 8b 3c 00 00 00 Ob c9 74 12 8b

000018a0 b3 38 00 00 00 8b fb 81 c7 00 30 00 00 2b 9 f3
000018b0 a4 Of 01 9b 90 02 00 00 OF 01 93 68 02 00 00 66
000018c0 b8 10 00 66 8e d8 66 8e cO 66 8e dO 66 8e e0 66

00100f60 00 00 00 00 00 00 00 00 00 fO ff 5d 76 e3 f0 2F
00100f70 93 c9 a4 1d f9 48 be f8 6¢ c7 1d 92 4c le 6e 35
00100f80 b4 f8 1b ae f6 69 e8 cO b7 34 74 al 4e 5a a7 93
00100F90 97 2f f3 47 cf d7 10 df f0 d6 e3 9b f5 cf a9 23
00100fa0 cd 9f 87 4f 37 7f le f1 fe dc 7d b9 9 f3 7b ef
00100fb0 cf 95 bf 94 3f 8d 63 9a cc 8a 36 5b 56 7b d2 76
00100fcO b6 d9 ad ee 61 f6 90 a4 2c 2b 54 66 37 de 3d a9
00100fd0 b9 d9 67 37 le 7a b5 ce ef Oc 58 ee 4d 30 dO 9b
00100fe0 cO 6e bc e7 3d f3 e7 d0O 9a bf a4 82 1b c7 9c f1
00100Ff0 db 66 2b d8 38 cb 2a 91 80 ad 7d 25 d8 Oa e5 db

Virtual Machine Monitor Layer

The Semantic Gap
[]

Example: Inspect pids of Guest Memory from VMM

e £) 00001600 eb 40 1b 02 63 74 00 0 00 00 0D 0D 00 00 00 0O |.0-.ct
eox —— 00001810 00 00 00 00 80 0D 00 00 00 00 00 0D 00 00 00 00 | ...
— a1 00001820 00 00 00 00 00 0D 00 00 00 00 00 00 00 00 00 00 |.....
o - A 00001830 00 00 00 00 00 00 00 00 10 76 16 cc 00 00 00 00
—=___1 00001840 00 19 66 8c d0 50 b8 08 00 00 00 66 8o d0 53 8o | F..P.. .. .5
00001850 49 FF 24 19 02 00 00 OF 20 <0 OF ba 0 1F OF 22 | .- g
1601 Sogment Rogators 00001860 <0 eb 00 b9 80 00 00 cO OF 32 OF ba f0 0B OF 30
rics 3 (| 00001670 OF 20 €0 OF ba f0 05 OF 22 €0 60 9c 8 3 cl ea -
F——— 00001880 04 89 a3 76 02 0D 00 Of 01 83 &0 02 00 0O Of 01
[os e 00001690 8b 83 02 00 00 Bb 8b 3¢ 0D 00 0D Ob c9 74 12 B PR
— 00001620 b3 33 00 00 00 B b 8L c7 00 30 00 00 2b 9 13 I.5.
= 000016b0 a4 OF 01 9 90 02 00 00 O 01 93 66 02 00 00 66 |.....
0000160 b8 10 00 66 B0 dB 66 Ge cO 66 Bo G0 66 Ge €0 66 |...T.

0010060 00 00 00 00 00 00 0000 00 0 FF 5 76 &3 0 2
00100770 93 €9 a4 1d 19 48 be 18 6c 6o

8
g
H

0 b4 3 1b ae T
00100190 97 2f 13 47 cf &7 10 df 10
0010020 cd 9F &7 4T 37 77 e 11 fe
00100/b0 cf 95 bf 94 3f B 63 9a co
001007c0 b6 d9 ad ce 61 16 90 ad 2o

d9 67 37 1o 7a b5 co o
001007e0 €0 6 be o7 3d £3 o7 d0 S
0010010 db 66 2b B 36 cb 2a 91 60 ad

8
g
SEEERERY

74

&
25 48 0a o5 db

Virtual Machine Monitor Layer

The Semantic Gap
[]

Example: Inspect pids of Guest Memory from VMM

In Kernel 2.6

Gooo1900 o 40 10 02 63 76 00 10 00 00
Coocie %055 5% 0o 50 de oo 50 0%

Coootszo %0 5 5 oo oo on o0 50 00 09

e n B0 o e B B 0% %

il S Sk R

b M m LR REe N struct task_struct {
o BnBmERET 22 —

oo B mmmmEE T2

Soooaste o4 33 5 06 52 o0 0f 02 %

Cooons 5 55 0o Bt oo b 008

Coootses o5 55 0o i on 31 7 0))
000018b0 a4 OF 01 9b 90 02 00 00 OF 01 8 8] .
S HUnEREIE 0 [1 pid_t pid;

oo 000 m o0 000000 c0 s0 10 11 57023 1020 s [192] pid_t tgid;
x% i

[356] uid_t uid;
[360] uid_t euid;
[364] uid_t suid;
[368] uid_t fsuid;
[

[

[

[

0100170 G o6 20 a5 38 (b 24 91 50 a4 74 25 db ou c5 db | 1oia F L

Virtual Machine Monitor Layer

3721 gid_t gid;
376] gid_t egid;
380] gid_t sgid;
384] gid_t fsgid;
[428] char comm[16];
}
SIZE: 1408

The Semantic Gap
[]

Example: Inspect pids of Guest Memory from VMM

In Kernel 2.6.

struct task_struct {

pid_t pid;
pid_t tgid;

uid_t
uid_t euid;
uid_t suid;

[] uid;
[1
[]
[368] uid_t fsuid;
[1
[1
[1
[1

01001 0 e .
60 b4 3 1b ae f5 69 €8 ct a1 4e 5a il
of 5 cf X3
0f0 cd 9f B7 41 37 71 1e or
< 4 a 5 @ >
100fc0 b6 d9 ad e o 3 as a.
00100760 b9 9 67 37 1 7a bS 0c 58 ce 4d 30 60 90 |97
001007e0 0 6 be o7 3d £3 o7 d0 Sa bF ad B2 1b c7 Oc 1 |.n. .-
0100710 db 66 2b 0B 36 cb 2a 91 B0 ad 7d 25 dB 0a €5 db | +.6.%

@ Kernel specific data structure definition

Virtual Machine Monitor Layer

gid_t gid;

gid_t egid;
gid_t sgid;
gid_t fsgid;

@ Kernel symbols (global variable)

@ Virtual to physical (V2P) translation ..
[428] char comm[16];
@ OS updates and patches can break the

existing introspection utilities }
SIZE: 1408

© What We Observe

What We Observe
[ele}

What we can observe

| Guest-0S |

What hypervisor observes

ﬁ

The Semantic Gap

/s Data-Tme/ =/ Objects // Interruets/ ;"'Excegtioni// K-events / :/ st-call / / Lib-call / 4 /

What we want

%

What We Observe
(o] lo}

What we can observe

From Native Hypervisor

@ CPU Registers. All of the CPU registers can be read by the
hypervisor when it gains control because it runs at the highest
privilege level.

@ Guest OS Memory. The entire guest OS memory state can also
be observed. However, hypervisors only have access to physical
addresses, which have to be translated to virtual addresses
when accessing them.

© Hard Disk Contents. Similar to the memory image, the content
of the guest OS’s disk image, if not encrypted, is also visible to
the hypervisor.

© Hardware Events. All hardware-level events, including timers,
interrupts, and exceptions, can also be observed.

@ 1/0 Traffic. The hypervisor also oversees all the 1/O traffic,
including network traffic, disk 1/0, and keystrokes.

What We Observe
ooe

What we can observe

From Emulation-based Hypervisor

@ Program Counter. They can know which instructions get
executed and their disassembly code.

@ Instruction Opcode and Operand. For each executed
instruction, they can observe its opcode and operand.

© Control Flow Transfer. All control flow transfers (e.g.,
call/jmp/ret, conditional branches) can be observed, along
with their source and destination addresses if there are any.

© Call Stack. The stack can be traversed if a stack frame pointer
exists, or instructions can be transparently instrumented to build
the call stack information.

©@ Context-Switch. Each specific process or thread execution
context can also be observed.

Q What We Want

What We Want
000

What we want

| Guest-0S |

What hypervisor observes

The Semantic Gap

/s Data-Tme/ =/ Objects // Interruets/ ;"'Excegtioni// K-events / :/ st-call / / Lib-call / 4 /

What we want

What We Want
o] o]

What we want

Data State Abstraction (Snapshot View)

@ Variables, Objects, and Virtual Address Spaces. Given the
physical memory of a guest OS, we want to know where kernel
or monitored process variables (or objects) of interest are, and
how to locate them.

@ Data Structure Types and Their Connections. We also would
like to know object types, data structures, and their point-to
relations

© File Systems and Files. Given the disk image, we are
interested in which type of file system is being used and where
files are located.

© Interrupts, Exceptions, and Other Kernel Events. For an
observed hardware event, we would like to obtain additional
details about it; for an interrupt or exception, we want to know
which specific interrupt or exception it is.

What We Want
ooe

What we want

Control State Abstraction (Contiguous View)

@ Instructions, Control Path, and Call Stack. Knowledge of
which instruction the VM is executing, which control path it
belongs to, and what the calling context is can help the
out-of-VM monitor precisely understand the current execution
context of the guest OS.

@ Function Calls, System Calls, Library Calls, and Hooks. As
instruction-level monitoring usually significantly slows down the
VM execution, we could instead monitor at the level of function
call execution, or at certain system calls, library calls, or hooks of
monitor interest.

© Processes, Threads, and Execution Context. When there is a
context switch, we would like to know which process (thread) is
switched (from) to, as control flow is often thread specific.

e Summary

Summary

Iews

>
c
o
L
=
)
E=
©
©
S
£
=
w

The Semantic Gap

YOUMS-IXaIU0D [N, || < spealy] ‘sassed0.d
H
m HOBIS-BD X | [X 1X9JuoD uonnoexy | @
) S
m Jajsuell MO [0U0D < N, | [\ x| sayouelg ‘SHOOH ‘S| .m
=] =
.m. puesadQ % 9poodQ |>< [[x SIajuI0d ‘sa|qelep m
o)
Jejunog weiboid < [\ x| sopuewag uoponasy| | 5
2]
Bleg O/l [SIS S siayng ‘slosoed | S
= €
m sjuaAg asempieH |\ N [N S suondaox3dnuaiul nov
=~ °
.m elea¥sia s S| | seny pue weishs op4 | &
©
Qo -
m Kiowspy [ea1sAud IS S [S S sadA| pue sa|qeliep m
sigsiboyd NdO > | [> > sjoalqO*sa|qeien
Sllo
o 2(le
2 52|25
@ 2 00 @ -
2 : 282 S
o ST g E
o = SIS B o
2 o5|[5e S
¥ S22 3
= eI =

Summary
L o)

Kernel Can be Untrusted

Plz@0®

Guest Kernel Heap
->-Q-1=-0

/
7
Guest Kernel Heap

01010 1qgg1001
1111@% 1820220
1 170 100111%) ~\
0¥8#1010 1011

Summary
L Je]

Kernel Can be Untrusted

sz@o%

struct task struct{ Guest Kernel Heap
@—)@—i@,—)rg -0
char comm[16]; 1 z
. | strilcpy(tsk->comm, ”’Skype”,16); |
3} Process Command ‘ 7
{) _
L .
. Initialization
7
Guest Kernel Heap

% - Ei 01010 1GEg1001
N @& = Firefox 1111@% 1&-&?
11280170 100110=)) e
4 \

6 =Skype 0¥#1010 1011
%@ = Adore-ng

Summary
L o)

Kernel Can be Untrusted

Plze@ow

struct task struct{ Guest Kernel Heap
@—)@—i@,—)rg -0
char comm[16]; 1 z
. | strilcpy(tsk->comm, ”’Skype”,16); |
3} Process Command ‘ 7
{) _
L .
. Initialization
7
Guest Kernel Heap

& _ 01010 1Ggg1001
\\4 = Skype 11110% 1&‘10"&_7
S 11680170 jpquif%)
£ SN

8 =Skype— - pjl processes are 0¥#1010
@) = Skype \ benign

On the trust of the semantic-gap

Challenge

Semantic Gap

T Trusted

Guest OS

Hypervisor

Untrusted

Summary
oe

On the trust of the semantic-gap

Challenge

Semantic Gap

T Trusted

Guest OS |Hypervisor

T

Untrusted

Summary
oe

Summary
oe

On the trust of the semantic-gap

Challenge Guest OS | Hypervisor

Weak Semantic Gap T

Strong Semantic Gap

T Trusted Untrusted

On the trust of the semantic-gap

Challenge

Weak Semantic Gap

Strong Semantic Gap

Untrusted Guest OS

Hypervisor

Untrusted Cloud
Hypervisor

Untrusted Guest OS
and Hypervisor

T Trusted

Untrusted

Summary
oe

	The Semantic Gap
	What We Observe
	What We Want
	Summary

