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Disk Introspection: FDE disk virus scanning [ATC’14]
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Disk Introspection: FDE disk virus scanning [ATC’14]
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Continues Monitoring [Payen et al. SP’08]
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Figure 1: Formal model of secure active monitoring shown with potential attacks.

ble for two reasons. First, the offline fashion in which this
analysis is normally done makes performance and run-time
overhead a non-issue for such systems. Second, the fact
that it is done in a staged, controlled environment, means
that the collected low-level data can be directly mapped to
the malware’s activity with few false positives. In a produc-
tion setting such as ours, the performance impact created
by such systems make its use impractical. Furthermore, the
low semantic level in which events are captured makes it
difficult to infer the higher-level data needed to make secu-
rity decisions.

In malware analysis, another important requirement is
that the analyzer and the active monitor must remain hid-
den from the malware. This means that they should not
introduce any noticeable side-effects in the malware’s exe-
cution environment, as this could cause the malware to in-
tentionally alter its behavior in an effort to thwart analysis
attempts. However, in our production setting, we are only
concerned with the protection and effectiveness of our mon-
itoring components.

2.2 Formal Requirements

We present a formal model in this section that general-
izes security applications performing active monitoring by
placing hooks in a system to initiate actions when specific
events occur. We use this model to analyze possible attacks
on such applications under a powerful adversary that con-
trols the entire system and identify a list of requirements
that an ideal secure monitoring approach should satisfy in
order to defeat such attacks. These formal requirements
drive the design and architecture of our approach.

Figure 1 illustrates our model. Consider a security ap-
plication A(C,D) with code C and data D that wants to
actively monitor the occurrences of a set of events E occur-
ring inside a machine M . Suppose that the application de-
pends on libraries or OS subsystems denoted by L(C ′, D′)
for its execution. In our model, we generically represent
events as activities occurring sometime along the execu-
tion of the kernel or a user process, which are handled by
event-handlers that exist in the system. Any event e ∈ E
is actively intercepted by placing a hook He in the con-

trol flow path between the point of the event occurring and
the point where handling the event is finished. The pur-
pose of the hook is to initiate a diversion of control-flow to
the security application. Depending on where the security
application resides, this diversion can be a straightforward
control transfer, a process switch or even an inter-domain
communication. Therefore, we use a generic notation Ne

to represent the notification call to the security application.
The context information Ie about the event and the hook
is sent along with the notification. We express the behav-
ior of the security application for the particular instance of
the event as B(Ie), which may include performing checks,
processing models, generating logs, determining appropri-
ate responses, etc. Finally, the response of the security ap-
plication is denoted by R(Ie), which are actions carried out
on the system, including updates to the state of the system
or modifications in execution flow.

We can identify several classes of attacks on various as-
pects of the active monitoring model. The first class of at-
tacks (A1) disables or bypasses the hooks He or tampers
with the notification mechanism, so that Ne is not invoked.
Attacks (A2) can target and modify the context informa-
tion Ie, providing the security application with an altered
view of the occurred event e. In addition, some attacks may
change the behavior B(Ie) exhibited by application on re-
ceiving Ie. These include attacks that modify the security
application A and its code C and data D (A3), or any of its
dependencies L (A4). Attacks (A5) may alter the response
carried out by the security application by intercepting and
modifying it.

The requirements for a secure active monitoring archi-
tecture that defeats the attacks are as follows:

1. Ne is triggered if and only if e occurs legitimately.

2. Ie is not modifiable between the occurrence of e and
the invocation of Ne.

3. B(Ie) of the security application is not maliciously al-
terable.

4. The effects of R(Ie) on the system are enforced.

Formal model of secure active monitoring shown with potential attacks.
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Continues Monitoring [Payen et al. SP’08]
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Figure 2: High-level view of the Lares architecture and its core components.

Figure 2, Lares includes two VMs: the untrusted guest VM
and a security VM that is part of our TCB.

Since the guest VM is untrusted, software placed inside
it requires special protection. This can be difficult to achieve
if the components are too large or too integrated with the
surrounding OS, so we keep them to the minimum required.
These include the hooks for intercepting events, and a small
specially-crafted trampoline code to pass events signaled
by the hooks to the hypervisor. These components are
self-contained and simple enough that write-protecting their
memory footprint is sufficient to guarantee their correct be-
havior. We add a special mechanism to the hypervisor to
provide these memory protections, along with an inter-VM
communication functionality used for event passing. These
additions, which we have implemented, are small to reduce
the likelihood of introducing bugs into the hypervisor.

The security VM contains the core of the active moni-
toring application, where the processing and decision mak-
ing associated with its functionality is done. Techniques
like memory and disk introspection can be used as part of
this decision making to gather additional information about
events sent from the hooks in the guest VM. After a deci-
sion is made, the security application sends it back to the
guest VM, where the decision is enforced.

As an example scenario, an anti-virus application would
place its signature matching and containment algorithms in
the security VM, whereas its monitoring hooks would go
into the guest VM. These hooks would be triggered when-
ever certain monitored events were executed by the guest
OS, and transmitted to the security VM by the trampoline
with the aid of the hypervisor. The anti-virus’ core engine
would receive these events and use introspection to enrich
them with contextual information, which would then be pro-
cessed by its signature matching algorithms and heuristics.
After reaching a decision, it would be sent back to the guest
VM’s trampoline, where a response measure is carried out,
such as preventing a process from loading or a file from be-
ing written to disk.

3.2 Guest VM Components

In traditional systems, all applications are run within a
single operating system. The guest VM fills the same role
as this traditional operating system by running all applica-
tions that are not considered to be part of the TCB. The only
exception is for the hooks and trampoline that are placed in
the guest VM to achieve the active control and monitoring
capabilities provided by Lares. Any application can be run
in the guest VM since it runs a full featured operating sys-
tem. With this in mind, the Lares architecture can be used
to protect a wide variety of systems including servers and
desktop systems.

One of the key capabilities in the Lares architecture is
the ability to insert protected hooks throughout the oper-
ating system running in the guest VM. These hooks can be
jumps placed inside program code, redirections within jump
tables, or any other technique that transfers control of exe-
cution. Hooks are required for any security software that
stops malicious code prior to it doing any damage. This is
because other techniques can only monitor by polling and
are unable to guarantee detection at arbitrary locations in
the code. With the protected hooks, there is a guarantee that
the security software can evaluate an action before allow-
ing it to happen. This guarantee is provided by our memory
protection mechanism, as described in Section 4.4.

When triggered, hooks redirect the system’s control flow
to another guest VM kernel component, the trampoline. The
trampoline is a specially-crafted piece of code that acts as a
bridge between the hooks and the security driver running in
the security VM. It passes arguments from the hooked func-
tion to the hypervisor’s inter-VM communication channel,
which then delivers them to the security domain. The tram-
poline is also responsible for receiving commands from the
security VM to execute actions requested by the security
software. As the rest of the guest OS kernel is untrusted,
the trampoline and the hooks must be protected from tam-
pering. This need imposes several restrictions on the de-
sign and implementation of the trampoline. First, it must
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In-VM Monitoring w/ Hardware[Sharif et al. CCS’09]

Figure 2: High-level overview of the Secure In-VM Monitoring approach

local data DM at native speed, i.e., without any hypervisor
intervention.

In case of in-VM monitoring, a direct control transfer to the han-
dler code from the hook initiates the monitor. Moreover, the moni-
tor can access all data and code because everything is contained in
the same address space. The problem of out-of-VM approaches is
that both performance requirements (P1) and (P2) cannot be satis-
fied. First, the hypervisor is invoked when the hook K is executed
to transfer control to the handler residing in another VM. Second,
the hypervisor usually needs to be invoked to partially map memory
belonging to the untrusted VM into an address space in the trusted
VM for the out-of-VM monitor.

To state the security requirements, we consider an adversarial
program A residing in the same environment as the system P . In
the threat model, A runs with the highest privilege in the guest VM
and therefore can directly read from, write to and execute from any
memory location that is not protected by the hypervisor. To ensure
the security of the monitor M , we state the security requirements:

∙ (S1) Isolation of the monitor’s code CM and data DM :
This ensures the integrity of the monitor’s code and data is
protected from the adversary A. Out-of-VM approaches sat-
isfy this requirement because A does not have any means to
access another guest VM.

∙ (S2) Designated point for switching into CM : Execution
should switch to the monitor only at one of the handlers in
the setH . This requirement ensures that an attacker does not
invoke any code in CM other than the designated points of
entry. Since the hypervisor initiates entry into the monitor,
out-of-VM approaches can ensure this requirement.

∙ (S3) A handler ℎi is called if and only if the correspond-
ing hook ki executes: This requirement has two parts - (a) If
a hook ki is reached in the monitored system, then the corre-
sponding handler ℎi must be initiated by the system. (b) an
handler ℎi is initiated only if the hook ki was executed. In
out-of-VM approaches, the first requirement can be satisfied
by design of the handler dispatcher. The second requirement
can be satisfied because the exact VMCalls that initiated the
hypervisor execution can be identified and checked.

∙ (S4) The behavior of M is not maliciously alterable: The
execution of handlers H should not be maliciously alterable
by the adversaryA. First, the control-flow should not depend
on any control-data that is alterable by the attacker. Second,
the handlers should not need to call any dependencies that
is at the control of the adversary. Third, after the handler
completes, execution should return to a point that is intended

by the monitor. An out-of-VM monitor can satisfy these re-
quirements by not using any control-data contained in DP .

None of the existing in-VM approaches can satisfy all of the se-
curity and performance requirements at the same time. First, the
simple method of write-protecting the monitor’s codeCM can only
work for stateless monitors, which do not have any private data. A
second approach may be to write protect the private dataDM using
help from the hypervisor. This, however, will require the hypervi-
sor to trap every write to verify the instruction. The performance
requirement (P2) is thus not satisfied. Finally, in-lined monitor-
ing approaches such as CFI [1] and WIT [2] can instrument each
control-flow or memory write operation, usually at compile time,
so that integrity checks can be enforced at run-time. A comprehen-
sive coverage of all the required instructions needs to be performed
to guarantee that the security requirements are satisfied. Such a
modification of all kernel-level code is an overkill to achieve the
performance requirements of a general-purpose monitoring frame-
work that may be utilized for hooking different types of events oc-
curring in an OS kernel. Our SIM approach is designed with all the
performance and security requirements in mind.

3 Secure In-VM Monitoring
The goal of our Secure In-VM Monitoring framework is to en-

able security monitors that meet all the performance and security
requirements discussed in Section 2. In this section, we describe
the design of the SIM framework.

3.1 Overall Design
The overall design of SIM is shown in Figure 2. The key idea

of SIM is to introduce a separate hypervisor-protected virtual ad-
dress space in the guest VM, which we call the SIM Virtual Address
Space. This protected address space is used to place the security
monitor. It exists in parallel to the virtual address spaces being
utilized by the operating system. The virtual memory is mapped
in such a way that it has a one-way view of the guest VM’s orig-
inal virtual address space. This means that the security monitor
can view the address space of the operating system, but no code
executing in the operating system can view the security monitor’s
address space. A number of entry gates and exit gates are the only
code that can transfer execution between the system address space
and the security monitor’s address space. Hooks are placed in the
kernel before specific events that transfer control to corresponding
gates. The entry gate has an invocation checker module that checks
who invoked the entry gate. Finally, the security monitor’s code
(e.g., handlers for each hook) and data are all contained in the SIM
address space. Next we describe how we construct the SIM address
space using paging-based virtual memory and hardware virtualiza-
tion features in detail.
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VMI based Attack Repair [Fraser et al. ACSAC’08]
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(1) Run diagnostics on kernel.
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Figure 2. The VICI Agent protects a kernel running in a virtual machine.

4. Diagnosis and repair

The VICI Agent uses a form of Virtual Machine
Introspection [11] to run its diagnostics on the virtual
machine’s kernel. To detect tampering with the ker-
nel’s instructions, it computes an MD5 checksum [24]
of the kernel’s text and compares the result against the
expected value for a healthy kernel. It performs similar
checksum comparisons for pages of Loadable Kernel
Module text. To detect changes to important function
pointers, registers, and constants, the VICI Agent com-
pares the values observed in kernel memory with the
values expected for a healthy kernel.

The VICI Agent’s diagnostics cover some of the as-
pects of kernel state listed in figure 1, specifically kernel
and module text, over 9000 kernel and module function
pointers, and a few commonly-targeted registers. There
are also diagnostics designed to detect the introduction
of unapproved packet handlers and a tampering attack
on the Linux kernel’s pseudo-random number genera-
tor described by Baliga and others [3]. We do not claim
this coverage is complete, as explained in section 9.

The VICI Agent has a fixed collection of repair ac-
tions. The simplest repair action is “Surgical” repair,
so-called because it is capable of repairing the most
common forms of rootkit tampering without harming
the repaired kernel. The rest of the repair actions rep-
resent stronger medicine with correspondingly greater
costs. The VICI Agent tries to hold these more costly
repair actions in reserve until faced with a rootkit that
the less-costly repair actions cannot handle. Each re-
pair action is described below:

The Surgical repair action simply writes correct val-
ues to text locations, variables, and registers that the di-
agnostics have found incorrect. In practice, this sim-
ple low-cost strategy has proven sufficient to defeat the
malicious techniques used by the rootkits we have col-
lected from the Internet. However, we have developed
a series of more complex test rootkits that require more
extreme repairs.

The Core War repair action is designed to handle
more complex rootkits that borrow the VICI Agent’s
own techniques to defeat Surgical repair. One of our
test rootkits uses a kernel thread to monitor the im-
proper values it writes to the kernel’s system call vector.
Whenever the VICI Agent’s Surgical repair restores the
proper values, the kernel thread writes the improper val-
ues back again, negating the repair.

Upon witnessing the failure of its Surgical repair,
the VICI Agent moves to the Core War repair action in-
spired by the classic game of Core War [9]. The Core
War repair finds the rootkit’s text by following the im-
proper pointer from the system call vector, and then
“neuters” the rootkit by re-writing its code to jump im-
mediately to the kernel’s proper function without per-
forming any of the rootkit’s malicious functionality. Al-
though control still flows through the rootkit, its ma-
licious functionality is removed and the VICI Agent’s
purpose is served. Although our code-rewriting seeks
to avoid results that would accidentally crash the ker-
nel, we reserve Core War for cases in which the simpler
and safer Surgical repair action fails.
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Out-of-Box Attack Recovery, Repair

Rootkit Targeted Function Pointer Repaired?
adore-2.6 kernel global, heap object 7
hookswrite IDT table X

int3backdoor IDT table X
kbdv3 syscall table X

kbeast-v1 syscall table, tcp4_seq_show X
mood-nt-2.3 syscall table X

override syscall table X
phalanx-b6 syscall table, tcp4_seq_show X

rkit-1.01 syscall table X
rial syscall table X

suckit-2 IDT table X
synapsys-0.4 syscall table X

Table : Rootkit Repairing with An Exterior [Fu and Lin, VEE’13] Tool.
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Non Applications

Non Security
1 Virtual machine management
2 Process management
3 High performance computing
4 Autonomous computing
5 ...
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Out-of-VM Management: Writable VMI [ATC’14]
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In-VM Management: Existing Approaches

Hardware	
  Layer	
  

Virtualiza:on	
  Layer	
  

Linux	
  OS	
   Linux	
  OS	
   Linux	
  OS	
  

..	
  >	
  ps >	
  ps >	
  ps 

Disadvantages

Scattered, distributed
Install, update, and execute in each VM



Security Applications Non Security Applications Deployment

In-VM Management: Existing Approaches

Hardware	
  Layer	
  

Virtualiza:on	
  Layer	
  

Linux	
  OS	
   Linux	
  OS	
   Linux	
  OS	
  

..	
  >	
  ps >	
  ps >	
  ps 

Disadvantages

Scattered, distributed
Install, update, and execute in each VM



Security Applications Non Security Applications Deployment

In-VM Management: Existing Approaches

Hardware	
  Layer	
  

Virtualiza:on	
  Layer	
  

Linux	
  OS	
   Linux	
  OS	
   Linux	
  OS	
  

..	
  
User	
  Space 

ssh 

>	
  ps 

>	
  ps 

>	
  ps >	
  ps 

Disadvantages

Requiring the (admin) login password.
Requiring install the management utilities in each VM.



Security Applications Non Security Applications Deployment

In-VM Management: Existing Approaches

Hardware	
  Layer	
  

Virtualiza:on	
  Layer	
  

Linux	
  OS	
   Linux	
  OS	
   Linux	
  OS	
  

..	
  
User	
  Space 

ssh 

>	
  ps 

>	
  ps 

>	
  ps >	
  ps 

Disadvantages

Requiring the (admin) login password.
Requiring install the management utilities in each VM.



Security Applications Non Security Applications Deployment

Performance Impact: HyperShell [ATC’14]

Process S B(ms) D(ms) T (X) date 7 0.11 0.12 1.09 mkdir X 0.10 0.19 1.90
ps 7 1.33 5.42 4.08 w 7 0.95 6.62 6.97 mkfifo X 0.10 0.19 1.90

pidstat 7 1.95 7.56 3.88 hostname X 0.04 0.06 1.50 mknod X 0.10 0.19 1.90
nice X 0.07 0.11 1.57 groups X 0.21 0.62 2.95 mv X 0.15 0.31 2.07

getpid X 0.01 0.02 2.00 hostid X 0.16 0.56 3.50 rm X 0.08 0.15 1.88
mpstat 7 0.29 0.66 2.28 locale X 0.09 0.17 1.89 od X 0.12 0.35 2.92
pstree 7 0.69 6.03 8.74 getconf X 0.09 0.34 3.78 cat X 0.07 0.18 2.57
chrt X 0.11 0.16 1.45 System Utils S B(ms) D(ms) T (X) link X 0.07 0.13 1.86

renice X 0.11 0.18 1.64 uptime 7 0.07 0.47 6.71 comm X 0.08 0.22 2.75
top 7 504.92 510.85 1.01 sysctl X 8.5 42.72 5.03 shred 7 0.72 0.92 1.28

nproc X 0.07 0.26 3.71 arch X 0.07 0.11 1.57 truncate X 0.07 0.26 3.71
sleep X 1.27 1.28 1.01 dmesg X 0.38 0.51 1.34 head X 0.07 0.15 2.14
pgrep X 0.89 4.72 5.30 lscpu X 0.26 1.21 4.65 vdir X 0.63 3.95 6.27
pkill X 0.87 4.33 4.98 mcookie 7 0.29 0.49 1.69 nl X 0.08 0.17 2.13
snice X 0.17 0.65 3.82 Disk/Devices S B(ms) D(ms) T (X) tail X 0.08 0.20 2.50
echo X 0.07 0.09 1.29 blkid X 0.14 0.61 4.36 namei X 0.07 0.13 1.86
pwdx X 0.05 0.07 1.40 badblocks X 0.35 0.44 1.26 whereis X 2.05 4.86 2.37
pmap X 0.16 0.36 2.25 lspci X 31.40 36.52 1.16 stat X 0.27 0.78 2.89
kill X 0.01 0.04 4.00 iostat X 0.45 1.04 2.31 readlink X 0.07 0.12 1.71

killall X 0.62 3.03 4.89 du X 0.11 0.53 4.82 unlink X 0.07 0.13 1.86
Memory S B(ms) D(ms) T (X) df X 0.16 0.35 2.19 cut X 0.08 0.17 2.13

free 7 0.04 0.08 2.00 Filesystem S B(ms) D(ms) T (X) dir X 0.07 0.20 2.86
vmstat 7 0.19 0.33 1.74 sync X 8.07 6.53 0.81 mktemp X 0.09 0.18 2.00
slabtop 7 0.22 0.36 1.64 getcap X 0.04 0.08 2.00 rmdir X 0.07 0.13 1.86

Modules S B(ms) D(ms) T (X) lsof X 3.31 6.12 1.85 ptx X 0.12 0.45 3.75
rmmod X 0.51 3.14 6.16 pwd X 0.07 0.11 1.57 chcon X 0.06 0.12 2.00
modinfo X 0.48 1.54 3.21 Files S B(ms) D(ms) T (X) Network S B(ms) D(ms) T (X)
lsmod X 0.10 0.17 1.70 chgrp X 0.19 0.47 2.47 ifconfig 7 0.32 1.15 3.59

Environment S B(ms) D(ms) T (X) chmod X 0.07 0.14 2.00 ip X 0.10 0.20 2.00
who X 0.14 0.72 5.14 chown X 0.19 0.47 2.47 route X 138.65 150.32 1.08
env X 0.07 0.11 1.57 cp X 0.11 0.27 2.45 ipmaddr X 0.13 0.34 2.62

printenv X 0.07 0.1 1.43 uniq X 0.09 0.35 3.89 iptunnel X 0.09 0.29 3.22
whoami X 0.19 0.45 2.37 file X 0.87 1.72 1.98 nameif X 0.10 0.21 2.10

stty X 0.11 0.46 4.18 find X 0.20 0.58 2.90 netstat 7 0.25 0.37 1.48
users X 0.09 0.53 5.89 grep X 0.35 2.14 6.11 arp X 0.14 0.24 1.71

uname X 0.09 0.11 1.22 ln X 0.08 0.14 1.75 ping 7 15.02 18.2 1.21
id X 0.26 0.85 3.27 ls X 0.14 0.27 1.93 Avg. - 7.27 8.45 2.73

Table 2: Evaluation Result of the Tested Utility Software. S stands for whether there is any Syntax-difference, B(ms)
stands for the average time of the base execution, D(ms) stands for the average execution time of the utility in
HYPERSHELL when using the daemon mode in GVM, and T (X) stands for the result of D/B (i.e., the times).

design can be applied to other types of hypervisors such
as Vmware, Xen and VirtualBox.

In this section, we present our evaluation results. All
of our experiments were carried out on a host machine
configured with an Intel Core i7 CPU with 8G memory
and running with Ubuntu 12.04 using Linux kernel 3.0.0-
31; the guest OS is Debian 6.04 with kernel 2.6.32.8.

5.1 Effectiveness

Benchmark Software. Recall the goal of HYPERSHELL
is to enable the execution of native management utilities
at the hypervisor layer to manage a guest OS, and
also enable the fast development of these software by
using the R-syscall abstraction. Since the software
development with HYPERSHELL is very simple (a
hypervisor programmer just needs to annotate the syscall
and inform HYPERSHELL which one is an R-syscall),
we skip this evaluation. In the following, we describe
how we automatically execute the native utilities in
HYPERSHELL to transparently manage a guest OS.

Today, there are a large number of administrative util-
ities to manage an OS. To test HYPERSHELL, we system-
atically examined all of the utilities (in total 198) from six
packages including core-utility, util-linux, procps, module-
init-tools, sysstat, and net-tools, and eventually we se-

lected 101 utilities, as presented in Table 2, though tech-
nically we can execute all of them. The selection criteria
is the following: if a utility is all user level program (e.g.,
hash computation such as md5sum), or not so system
management related (e.g., tr), or can be executed in al-
ternative way (e.g., poweroff, halt), or not supported
by the kernel any more (e.g., rarp), we ignore them.

Experimental Result. Without any surprise, through our
automated system call reverse execution policy, all of
these utilities can be successfully executed in HYPER-
SHELL. To verify the correctness of these utilities, we
use a cross-view comparison approach in a similar way
when we tested our prior systems such as VMST [16, 17]
and EXTERIOR [18]. Basically, to test a given utility such
as ps, we first execute it inside the GVM and save the
output, which is called the in-VM view; then we execute
it inside HYPERSHELL to manage the GVM and also save
the output, which is called the out-of-VM view. Then we
compare the syntax (through diff) and semantics (with
a manual verification) of the in-VM and out-of-VM views,
which leads to the two sets of effectiveness test results:
one is the syntax comparison, and the other is the semantic
(i.e, the meaning) comparison.

We notice that while there are 16 utilities that have
syntax differences (as shown in the S column in Table 2),
all other utilities have the same screen output. A further
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Deployment

1 Bare metal (e.g., Xen, vSphere, Hyper-V)
2 Hosted, Native Hypervisor (e.g., KVM)
3 Hosted, Emulation Hypervisor (e.g., QEMU)
4 Extra Hardware (e.g., PCI device in Copilot)
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Deployment Comparison

Metric Definition
Flexibility How many constraints are imposed on the monitor
Security How well the deployment type provides for security coverage

Invisibility How difficult the presence of the monitor is to detect from within the VM
Speed How much system slowdown occurs compared to no monitor running
Space How much storage capability the deployment type possesses

Table : Definitions of the metrics used to compare out-of-VM monitor
deployment types.
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Deployment Comparison

Approaches Flexibility

Security

Invisibility

Speed
Space

Bare Metal  G# G#   
Hosted, Native Hypervisor  G# G#   

Hosted, Emulation Hypervsior  G# G# #  
Extra Hardware #    #

Table : Comparison between different out-of-VM monitor deployment
types. Note that symbol # denotes a low degree for that comparison
item, G# denotes a medium degree, and  denotes a high degree.


	Security Applications
	Detection
	Prevention
	Recovery

	Non Security Applications
	Deployment



