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Pipeline for Our Example
Using SCALE Atmel dataset

A Acquire training data
1000 traces, random known plaintexts
Fixed known key is less ideal
Traces are already aligned

B Build a profile
1 We already identified potential PoIs
2 Model and profiling tbd

C Collect target traces
1000 traces, random known plaintexts

D Distinguish
1 Template Attack
2 Stochastic Attack
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

1. From Probability to Likelihood

For each key candidate k determine its a posteriori probability
given the observed leakage L
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

1. From Probability to Likelihood

Pr[k | L ] = Pr[L | k ] · Pr[k ]
Pr[L]

Pr[L | k ] is the likelihood
Pr[k ] and Pr[L] can be ignored
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

2. From Likelihood to Sum of Log Likelihoods

Assume each trace leaks independently, then

Pr[L | k ] =
∏
i

Pr[Li | k ]
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

2. From Likelihood to Sum of Log Likelihoods

Assume each trace leaks independently, then a�er taking logs

log2 Pr[L | k ] =
∑
i

log2 Pr[Li | k ]
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

From Log Likelihood to QDA

Assume
L(data) ∼ M̂(xi ⊕ k∗) +N (0, σ)

then
log2 Pr[Li | k ] = log2N (Li − M̂(xi ⊕ k); 0, σ)
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

From Log Likelihood to QDA

Assume
L(data) ∼ M̂(xi ⊕ k∗) +N (0, σ)

then

log2 Pr[Li | k ] = − log2 e
(
Li − M̂(xi ⊕ k)

)2
/2σ2 − 1

2
(1+ log2 π)− σ
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Template Attacks
Naive Bayes

i xi power
0 12 1.35. . .
1 123 4.65. . .
...

...
...

...
...

...
999 59 2.79. . .

⇒

k0 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

QDA Summary

score(k|L) =
∑
i

(Li − M̂(xi ⊕ k))2

To profile: M̂(z) for all 256 possible z

Warning: Scores can no longer be interpreted as posteriors
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Template and Stochastic Attacks
SCALE Atmel Profiling
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Template Attack

For all 256 possible S-box input values
determine the sample mean
(optional) determine the sample variance

Problem: 1000 traces is not enough to estimate 256 parameters
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Template and Stochastic Attacks
SCALE Atmel Profiling
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Stochastic Attack
Assume the leakage model
Ma,b(k, x) = a · HammingWeight(Sbox(x ⊕ k)) + b

estimate a and b
(Warning: The right estimation is naively unweighted)
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Template Attacks
SCALE Atmel Scores
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Final distinguishing scores

A�er incorporating 1000 target traces
left One candidate key very clearly sticks out
right One candidate key sticks out, but not as much
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Template Attacks
SCALE Atmel Scores
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Evolution of distinguishing scores

Look at scores as a function of number of traces incorporated
left the true key quickly separates from the rest
right it takes much longer for the true key to stand out

In blue the actual keybyte
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Template Attacks
SCALE Atmel Scores
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Evolution of distinguishing scores

Look at scores as a function of number of traces incorporated
left the true key quickly separates from the rest
right it takes much longer for the true key to stand out

In blue the actual keybyte
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Template Attacks
SCALE Atmel Success Rate
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Success Rate: Probability that best guess wins

For each i (x-axis), ran 2000 experiments:
1 Selected i out of 1000 traces
2 Check if best guess is actual keybyte

Warning: resampling methodology used due to available data
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Template Attacks
SCALE Atmel Success Rate
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Success rate conclusion
1 Le� performs better than right
2 Success rate 2−2 for a single keybyte, only gives 2−32 for the full
16-byte key.

Note: jaggedness likely due to low number of experiments
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg

Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

L← Leak(K,X)

win← K = K∗
K

win

K̂

The adversary can exhaustively search the key
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Different Adversarial Scenarios
Not-Quite-Kerckhoffs Principle

A

K∗ ←$ Kg
Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

X L

L← Leak(K,X)

K,X

L

win← K = K∗
K

win

K̂

The adversary can enumerate the key
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Enumeration
Enhancing Divide-and-Conquer Attacks

k0 score
0 0.123. . .
1 0.127. . .
...

...
255 0.238. . .

k1 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

. . .

k15 score
0 0.184. . .
1 0.167. . .
...

...
255 0.152. . .

Best guess Simply output the most likely 128-bit key overall
Key enumeration Test keys frommost likely to least likely until success
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Enumeration
Enhancing Divide-and-Conquer Attacks

k0 score
0 0.123. . .
1 0.127. . .
...

...
255 0.238. . .

k1 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

. . .

k15 score
0 0.184. . .
1 0.167. . .
...

...
255 0.152. . .

Best guess obviously k0 = 0, k1 = 255, . . . , k15 = 255

But what about the next best guess?

Question posed by Veyrat-Charvillon et al. (SAC’12)
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Enumeration
Enhancing Divide-and-Conquer Attacks

k0 score
0 0.123. . .
1 0.127. . .
...

...
255 0.238. . .

k1 score
0 0.134. . .
1 0.116. . .
...

...
255 0.098. . .

. . .

k15 score
0 0.184. . .
1 0.167. . .
...

...
255 0.152. . .

DPA with Enumeration
A number of cost metrics

1 The number of traces (profile vs.target)
2 The running time of the distinguisher
3 The number of keys to test
4 The overhead (in time) to enumerate
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Enumeration
Enhancing Divide-and-Conquer Attacks

Some approaches

Naive Create ordered list of all 2128 keys
2012 Tree-like recursion algorithm

[Veyrat-Charvillon, Gérard, Renauld, Standaert / SAC]

2015 Dynamic programming enabling parallellization
[Martin, O’Connell, Oswald, Stam / Asiacrypt]
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A Typical Side-Channel Attack Pipeline

Adding Enumeration

A�er the Distinguish phase, the scores are fed to an Enumeration phase
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A Typical Side-Channel Attack Pipeline

Adding Enumeration

A�er the Distinguish phase, the scores are fed to an Enumeration phase

But how long will it take, roughly?

Question posed by Veyrat-Charvillon et al. (Eurocrypt’13)
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A Typical Side-Channel Attack Pipeline

Emulating Enumeration

A�er the Distinguishing phase,
use knowledge of the target key to determine its rank.

Rather than running enumeration, Emulate it to predict its runtime
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Key Ranking
Emulating the cost of key enumeration

Relevance: Evaluation
Many SCA are run by evalution labs:

The care not about actually recovering the key
Only how di�icult it is to do so

The target key will be known already!

Ranking algorithms

A number of relevant metrics
1 The time to compute
2 Potential for parallellization
3 Quality of the returned rank when approximating
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Key Ranking
Emulating the cost of key enumeration

Some algorithmic approaches

lore Adding “guessing entropies”
2013 Tree-like recursion algorithm

[Veyrat-Charvillon, Gérard, Renauld, Standaert / Eurocrypt]

2015 Dynamic programming enabling parallellization
[Martin, O’Connell, Oswald, Stam / Asiacrypt]

2015 Convolution of histograms
[Glowacz, Grosso, Poussier, Schüth, Standaert / FSE]
[Bernstein, Lange, van Vredendaal / eprint]
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Key Rank Distributions
Martin, Mather, Oswald, Stam / Asiacrypt’16

A

K∗ ←$ Kg
Leak←$L

assert Leak ∈ L

C ← EK∗ (X)

L←$ Leak(K∗, X)

X L

L← Leak(K,X)L← Leak(K,X)

K,X

L

win← K = K∗
K

win

K̂

The Rank Distribution
Evaluator’s task for some keyed device:

How long will it roughly take to recover the key
as a function of the number of traces?
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Key Rank Distributions
Martin, Mather, Oswald, Stam / Asiacrypt’16

A

K∗ ←$ Kg
Leak←$L

assert Leak ∈ L
C ← EK∗ (X)

L←$ Leak(K∗, X)

Leak, X L

L← Leak(K,X)L← Leak(K,X)

K,X

L

win← K = K∗
K

win

K̂

MMOS Setup

AES-128 with simulated leakage
Sbox output Hamming weight with Gaussian noise
For SNRs 2x with x ∈ {−7,−5,−3}
Ran an unprofiled Correlation Power Attack (CPA)
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Key Rank Distributions
Martin, Mather, Oswald, Stam / Asiacrypt’16

MMOS Lessons
1 Average log rank is more useful than log of average rank
geometric mean versus arithmetic mean

2 The variance in the rank is considerable, esp. in the middle
3 SNR does not a�ect the shape of the distribution beyond scaling x-axis
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Key Rank Distributions
Martin, Mather, Oswald, Stam / Asiacrypt’16

Challenges

1 Improved sensor fusion to combine subkey scores
2 Optimize distinguishers w.r.t. resulting key ranks

Model and feature selection
Score computation

3 Rank distribution against various countermeasures
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SCALE: A Resource by Dan Page
https://github.com/danpage/scale

Side-Channel Attack Lab. Exercises
Provides a suite of material related to side-channel
(and fault) attacks that is low-cost, accessible,
relevant, coherent, and e�ective.

SCALE Data Sets

1 Four platforms: an Atmel atmega328p (an AVR) plus three NXP ARM
Cortex-M processors

2 Implementation uses an 8-bit datapath and look-up tables for the
S-box and xtime operations (but code not known)

3 2× 1000 traces of AES-128 each (known vs. unknown key)
4 Traces acquired using a Picoscope 2206B, using triggers for alignment

https://github.com/danpage/scale
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Power Analysis Attacks
Stefan Mangard, Elisabeth Oswald, and Thomas Popp’s Classic

Revealing the Secrets of Smart Cards

“first comprehensive treatment of power
analysis attacks and countermeasures”
Aimed at the practitioner
From 2007⇒ nomodern ideas and theory
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CHES
An IACR Conference

Cryptographic Hardware and Embedded
Systems

Established in 1999
E�icient implementations
How tomount implementation attacks
How to protect against them
New designs that allow e�icient yet secure
implementations

https://ches.iacr.org

https://ches.iacr.org

