
Approximate search in intrusion detection

Slobodan Petrović, NTNU Gjøvik, Norway
COINS summer school, Metochi, July 2018

2/147

Contents

• Fundamental concepts

• Search techniques for IDS

• The Aho-Corasick algorithm

• Bit-parallelism and exact search

• Approximate search in IDS

3/147

Fundamental concepts

• Intrusion

• A set of actions aimed at compromising the security goals
(confidentiality, integrity, availability of a computing or a
networking resource)

• Intrusion detection

• The process of detecting and identifying intrusion activities

4/147

Fundamental concepts

• Intrusion prevention

• The process of both detecting/identifying intrusion
activities and managing responsive actions throughout a
computer system or a network

• Intrusion detection system (IDS)

• A system that automatically performs the process of
intrusion detection

5/147

Fundamental concepts

• Intrusion prevention system (IPS)

• A system that automatically detects/identifies intrusions
and manages responsive actions

• A convergence of a firewall and an IDS

• The IDS component detects and identifies the malicious traffic

• The firewall component prevents the malicious traffic from
entering/exiting the network

• For high performance, uses sophisticated search algorithms
(can be implemented in hardware - ASIC, FPGA)

6/147

Fundamental concepts

• Basic assumptions regarding operation of an IDS/IPS

• System activities are observable

• To detect/identify intrusions, the IDS/IPS must be connected to
the defended system

• If some content is encrypted, the IDS must be able to decrypt it

• Normal and intrusive activities have distinct evidence

• Very often, the differences between normal and intrusive
activities/traffic are very small

• The task of an IDS/IPS is to detect these differences

7/147

Fundamental concepts

8/147

Fundamental concepts

• Data pre-processor

• Collects and formats the input data

• Detection algorithm

• Based on the detection model, detects the difference
between ”normal” and intrusive traffic/log events

• Alert filter

• Estimates the severity of alerts and warns the operator or
manages responsive activities (usually blocking)

9/147

Fundamental concepts

• Incoming traffic/log data

• Packets

• The header contains routing information

• The content may also be important (and is more and more) for
detecting intrusions

• Logs

• A chronological set of records of system activity

10/147

Fundamental concepts

• Detection algorithm

• Checks the incoming data for presence of anomalous
content – search

• A major detection problem

• There is no sharp limit between “normal” and “intrusive”

• Consequence – false positives

11/147

Fundamental concepts

• IDS classification

• By scope of protection (by location)

• Host-based IDS

• Network-based IDS

• Application-based IDS

• Target-based IDS

• By detection model

• Misuse detection

• Anomaly detection

12/147

Fundamental concepts

• Host-based IDS

• Collect data from sources internal to a host, usually at the
operating system level (various logs etc.)

• Monitor user activities

• Monitor execution of system programs

13/147

Fundamental concepts

• Network-based IDS

• Collect network packets

• Have sensors deployed at strategic locations

• Inspect network traffic

• Monitor user activities on a network

14/147

Fundamental concepts

• Application-based IDS

• Collect data from running applications

• Typically, large applications such as database systems

• The data sources include

• Application event logs

• Other data collections internal to the application

15/147

Fundamental concepts

• Target-based IDS (integrity verification)

• Generate their own data

• By adding code or a hash value/checksum to the executable

• Use these checksums or cryptographic hash functions to
detect alterations to system objects and then compare
these alterations to a policy

• Trace calls to other programs from the monitored
application

16/147

Fundamental concepts

• Misuse detection (1)

• Gathering information about indicators of intrusion in a
database in advance

• Determining whether these indicators can be found in
incoming data

17/147

Fundamental concepts

• Misuse detection (2)

• For misuse detection, the following is needed

• Good understanding of what constitutes misuse behavior

• Intrusion patterns, or signatures

• A reliable record of user activity

• A reliable technique for analyzing the activity record

• Very often – pattern matching, which includes search

18/147

Fundamental concepts

• Misuse detection (3)

Intrusion
patterns
(signatures)

Activities

Analysis (e.g.
pattern
matching)

Intrusion

Signature example: if src_ip = dst_ip then “land attack”

19/147

Fundamental concepts

• Misuse detection (4)

• Best suited for reliably detecting known misuse patterns

• By means of signatures

• Impossible to detect previously unknown attacks (zero-day)

• A single bit of difference in misuse patterns is enough for an IDS
to miss a new attack

• It is possible to use the existing knowledge (for instance, of
consequences of attacks) to recognize new forms of old attacks

20/147

Fundamental concepts

• Misuse detection (5)

• False positives

• Misuse detection systems sometimes generate alerts even if the
activities are in fact normal

• Normal activities often closely resemble the suspicious ones

• The attackers do their best to achieve a high level of similarity
between normal activities and attacks

• Careful adjustment of the IDS parameters is needed to
reduce the number of false positives

21/147

Fundamental concepts

• Misuse detection (6)

• New (zero-day) attacks require new signatures

• The increasing number of attack signatures causes the
signature databases to grow over time

22/147

Fundamental concepts

• Misuse detection (7)

• Every data unit (a packet or a session) must be compared to
each signature for the IDS to detect intrusions

• Computationally expensive as the bandwidth increases

• When the bandwidth overwhelms the capabilities of the
IDS, it causes the IDS to miss or drop packets

• In such a situation, false negatives are possible

• Attack traffic present in the dropped packets

23/147

Fundamental concepts

• Anomaly detection (1)

• Establishing profiles of normal user/network behavior

• Comparing actual behavior to those profiles

• Alerting if deviations from the normal behavior are detected

• Profiles are often defined as sets of metrics

• Measures of particular aspects of user/network behavior

• A metric is associated with either a threshold or a range of values

24/147

Fundamental concepts

• Anomaly detection (2)

• False positives

• Strange behavior patterns do not always indicate intrusions

• Sometimes, rare traffic sequences represent normal behavior

• This is a major problem in anomaly detection

• False negatives

• If the IDS thresholds are set too high, we may miss the attacks

25/147

Fundamental concepts

• Anomaly detection (3)

26/147

Fundamental concepts

• Anomaly detection (4)

• In misuse detection, the analysis engine alerts if the
analyzed activity matches an entry in the signature database

• In anomaly detection, the analysis engine alerts if the
analyzed activity does not match any of the established
profiles of normal behavior

• Search through the whole database is needed for each
analyzed activity (e.g. for each packet) in the worst case in
both misuse and anomaly detection

27/147

Fundamental concepts

• Anomaly detection (5)

• The number of profiles of normal behavior is much larger
than the number of known attacks

• If we would want to make a database of normal behavior profiles,
this database would be too large for efficient real time processing
that is needed in an IDS

• Consequently, a size reduction of such a database is needed

• Then, the profiles of normal behavior are not precise enough

• Consequence – a large number of false positives, larger than with
misuse-based IDS in general

28/147

Search techniques for IDS

• Checking traffic against a large database is a resource-
intensive task that involves search

• Because of that, the choice of the search algorithm is very
important in a misuse based IDS

• In most practical cases, exact search is used

• For every variation of the same attack, a new signature must be
produced, otherwise an exact search algorithm fails to detect it

• To avoid this, approximate search can be used

• Still in the experimental phase, but promising

29/147

Search techniques for IDS

• When we discuss IDS that implement search algorithms,
we usually refer to network-based systems

• Most often used open-source and commercial IDS (e.g.
Snort, Suricata, etc.) are network-based

30/147

Search techniques for IDS

• The detection module is the core IDS component

• Compares the header/content of the analyzed packet or a
reassembled set of packets (a session) with the attack
signatures the IDS is aware of

• For such a comparison, a search algorithm is necessary

• Detects known attack patterns in the intercepted traffic

• Efficiency of the detection module depends on the choice of
the search algorithm and its efficient implementation

31/147

Search techniques for IDS

• The factors that determine IDS search efficiency (1)

• The need for multi-pattern search

• The case sensitivity of search patterns

• The size of the search patterns

• The number of search patterns processed during a single
rule/signature processing

• The size of the alphabet

32/147

Search techniques for IDS

• The factors that determine IDS efficiency (2)

• The possibility of launching so-called algorithmic attacks
against the IDS

• Here, the attacker deliberately sends traffic that is difficult to
analyze by the IDS search algorithm

• Happens when the average time complexity of the search
algorithm is different from the worst-case time complexity

• The search text size

• The frequency of searches

33/147

Search techniques for IDS

• The need for multi-pattern search

• Processing of a signature often requires search for multiple
patterns in an analyzed data unit (packet or session)

• Attack signatures can be very complex

34/147

Search techniques for IDS

• The case sensitivity of search patterns

• In order to mitigate IDS evasion, case insensitive search is
desirable

• Changing case of the keywords by the attacker may lead to
missing the detection by the IDS

• If a search pattern is found in the analyzed packet, an
additional check might be performed whether there are any
issues in the signature that have anything to do with the
case of the letters

35/147

Search techniques for IDS

• The size of the search pattern

• For some search algorithms, the size of the search pattern
affects their efficiency to a great extent

• So-called skip algorithms (e.g. Wu-Manber) are particularly
sensitive to this

• Their worst-case complexity might be much higher than the
average-case complexity

• Inadequate for application in intrusion detection modules

• Sensitive to algorithmic attacks

36/147

Search techniques for IDS

• The number of search patterns processed during a
single signature processing

• In general, the performance of a search algorithm is
reduced as the number of search patterns increases

• Consequence of reduced benefit of usage of processor cache
memory, due to the fact that the size of this memory is limited

• This inevitable degradation of performance should be sub-linear

• Important for scalability

37/147

Search techniques for IDS

• The size of the alphabet

• Has significant influence on the search algorithm efficiency

• In IDS, alphabets are large (e.g. UNICODE)

• Any search algorithm used in IDS must be efficient enough
to cope with this size of the alphabet

38/147

Search techniques for IDS

• The possibility of launching algorithmic attacks (1)

• Algorithmic attacks

• Exploit the fact that some search algorithms used in IDS detection
modules have the average-case complexity much better than the
worst-case complexity

• By launching specially designed packets that contain patterns,
whose processing is less efficient, the attackers may significantly
reduce performance of the IDS

39/147

Search techniques for IDS

• The possibility of launching algorithmic attacks (2)

• The search algorithms, whose average-case and worst-case
complexities do not differ too much are especially
convenient to be used in IDS detection modules

• The Aho-Corasick algorithm - very often used

• Multi-pattern search – all the patterns detected in one pass

• The average-case complexity and the worst-case complexity are
the same

40/147

Search techniques for IDS

• The size of the search text (1)

• The size of the search text in IDS may vary

• It can be very small, just a few bytes

• Example - short packets, such as the ICMP packets

• It can also be very long

• Example - long HTTP reassembled sessions

41/147

Search techniques for IDS

• The size of the search text (2)

• Implementation of any search algorithm requires
initialization

• Certain fixed number of operations before the very execution

• The cost per processed byte of search text may be high, especially
if the string is short

• Because of that, search algorithms requiring less
initialization operations are more convenient for application
in IDS detection modules

42/147

Search techniques for IDS

• The frequency of searches

• May be high in high bandwidth networks

• The frequency of execution of the search algorithm and the
size of the search text (i.e. lengths of the inspected packets)
are related

• The high frequency of execution of the search algorithm might
make the search setup costs high per processed byte

• Better search algorithms for IDS have fewer setup
operations

43/147

The Aho-Corasick algorithm

• Bearing in mind the factors that determine IDS
efficiency

• The Aho-Corasick search algorithm is very often chosen to
be implemented in misuse-based IDS

• Its properties make it more suitable for IDS search than the other
search algorithms

44/147

The Aho-Corasick algorithm

• Properties of the Aho-Corasick algorithm (1)

• A multi-pattern search algorithm

• Its performance can be further improved by pre-processing (using
Deterministic Finite Automaton (DFA))

• The case-sensitivity issue is easy to handle

• The size of the search patterns does not affect the time
performance, it only affects memory consumption

• The scalability is good, regarding the number of search
patterns

45/147

The Aho-Corasick algorithm

• Properties of the Aho-Corasick algorithm (2)

• Can process large alphabets, without performance
degradation

• The average-case and the worst-case complexities are the
same – the algorithmic attacks against IDS implementing
this search algorithm have no effect

• The setup process is efficient enough

• It is possible to process short packets and frequent packets in a
satisfactory way

46/147

The Aho-Corasick algorithm

• Consists of 2 phases

• In the first phase, a pattern matching machine (a Finite
State Machine – FSM) is constructed

• A directed graph describing transitions between the states of the
machine after receiving certain input characters (appearance of
an input character is called an event in FSM terminology)

• In the second phase, the input string is processed and all
the patterns from the given set of search patterns are found
in it in a single pass

47/147

The Aho-Corasick algorithm

• The pattern matching machine (1)

• Let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} be the set of search patterns and let
𝑋 be the search string

• The string 𝑋 and the members of 𝑌 consist of symbols from
the alphabet 𝒜

• The search problem

• Locate and identify all substrings of 𝑋 that are patterns in 𝑌

• There may be overlap of the substrings

48/147

The Aho-Corasick algorithm

• The pattern matching machine (2)

• Given the set 𝑌, the pattern matching machine for 𝑌 is a
structure that takes 𝑋 as input and produces as output the
locations in 𝑋, at which the patterns from 𝑌 appear as
substrings

• The pattern matching machine consists of nodes called
states, labeled with numbers

49/147

The Aho-Corasick algorithm

• The pattern matching machine (3)

• The machine takes input symbols from 𝑋, one at a time, and
processes them by making state transitions and occasionally
producing output

• The output of the machine consists of patterns from 𝑌,
together with the state labels of the machine where they
were detected

50/147

The Aho-Corasick algorithm

• The pattern matching machine (4)

• A pattern matching machine is defined by means of three
functions

• A goto transition function 𝑔 that maps a pair (state, input symbol)
into a state or a message fail

• A failure transition function 𝑓 that maps a state into a state

• An output function 𝑜 that associates a set of patterns from 𝑌
(possibly empty) to any state

51/147

The Aho-Corasick algorithm

• The pattern matching machine (5)

• Example (1)

• Let 𝑌 = {𝑠𝑛𝑜𝑤, 𝑠𝑛𝑜𝑟𝑡, 𝑜𝑟}

• The goto transition function 𝑔

52/147

The Aho-Corasick algorithm

• The pattern matching machine (6)

• Example (2)

• The failure transition function 𝑓 for 𝑌

• 𝑓 is not defined in the state 0 since no input can produce the
message fail from that state

53/147

The Aho-Corasick algorithm

• The pattern matching machine (7)

• Example (3)

• The output function 𝑜 for 𝑌

54/147

The Aho-Corasick algorithm

• The pattern matching machine (8)

• To construct the goto function and the failure function, two
separate algorithms are used

• The output function is constructed during the execution of
both algorithms

• Initialized during the construction of the goto function

• Updated during the construction of the failure function

55/147

The Aho-Corasick algorithm

• The pattern matching machine (9)

• Constructing the goto function

• Input - the set 𝑌 of search patterns

• Start with a single vertex 0

• Each pattern from 𝑌 defines a separate path in the goto graph

• That same search pattern is added to the output function of the
state at which the path terminates

• At the end, a loop is added in the state 0, corresponding to the
transitions on input symbols different than the initial symbols of
the patterns from 𝑌

56/147

The Aho-Corasick algorithm

• The pattern matching machine (10)
Algorithm 1

57/147

The Aho-Corasick algorithm

• The pattern matching machine (11)

• The failure function determines the state to which the
pattern matching machine returns if a ʺwrongʺ character is
encountered at the input, after the machine has found itself
in a non-initial state

58/147

The Aho-Corasick algorithm

• The pattern matching machine (12)

• The failure function 𝑓 is constructed in the breadth-first
manner

• Let depth of a state 𝑠 be length of the shortest path from 0 to 𝑠

• The values of 𝑓 are first determined at the depth 1, and they are
all equal to 0

• For the depth 𝑑, the values of the failure function are obtained
based on the values for the depth 𝑑 − 1

• The values of the output function are updated during the
execution of this algorithm

59/147

The Aho-Corasick algorithm

• The pattern matching machine (13)
Algorithm 2

60/147

The Aho-Corasick algorithm

• The pattern matching machine (14)

• The pattern matching machine obtained with the algorithms
1 and 2 is called Non-deterministic Finite Automaton (NFA)

• In general, it makes more than one state transition after receiving
a single input symbol

61/147

The Aho-Corasick algorithm

• The pattern matching machine (15)

• It can be shown that any NFA can be transformed into a
Deterministic Finite Automaton (DFA)

• Makes only one state transition after receiving an input symbol

• Transforming NFA to DFA can sometimes contribute to
improved efficiency of the Aho-Corasick algorithm

62/147

The Aho-Corasick algorithm

• Processing of an input string (1)

• A pattern matching machine constructed by means of the
algorithms 1 and 2 is capable of finding all the patterns from
the given pattern set 𝑌 in any input string 𝑋

• The symbols from 𝑋 are fed into the machine in a serial
manner

63/147

The Aho-Corasick algorithm

• Processing of an input string (2)

• Whenever the machine finds a pattern from 𝑌 in 𝑋, it
produces non-empty output string(s) corresponding to the
value of the output function 𝑜 at the state where the
pattern is found

64/147

The Aho-Corasick algorithm

• Processing of an input string (3)

• Each input symbol starts an operating cycle of the pattern
matching machine

• The machine starts in the state 0 and processes the first
symbol of the sequence 𝑋

• For any state 𝑠 and input symbol 𝛼, the pattern matching
machine may either make a goto transition (if 𝑔[𝑠, 𝛼] = 𝑠’)
or a failure transition (if 𝑔[𝑠, 𝛼] = 𝑓𝑎𝑖𝑙)

65/147

The Aho-Corasick algorithm

• Processing of an input string (4)

• In the case of a goto transition

• If 𝑜[𝑠’] ≠ {} the machine produces the output 𝑜[𝑠’] together with
the position of the current input symbol

• In the case of a failure transition

• The failure function value 𝑓[𝑠] = 𝑠’ is evaluated and the machine
repeats the cycle with 𝑠’ as the current state and 𝛼 as the current
input symbol

66/147

The Aho-Corasick algorithm

• Processing of an input string (5)

67/147

The Aho-Corasick algorithm

• Processing of an input string (6)

• Example: 𝑋 =“snort on snow”

• The operation of the pattern matching machine

68/147

Bit-parallelism and exact search

• Deterministic Finite Automaton (DFA)

• A finite state machine (FSM) with a property that from each
state, given an input symbol, there is only one outgoing
branch to the next state

69/147

Bit-parallelism and exact search

• Nondeterministic Finite Automaton (NFA) (1)

• A finite state machine capable of making transitions to more
than one state for the same input symbol

• One possible interpretation of such behavior

• The machine makes copies of itself in such a situation – parallel
processing

• Each copy processes the subsequent input symbols independently

70/147

Bit-parallelism and exact search

• Nondeterministic Finite Automaton (NFA) (2)

• If, after performing such copy making and following one of
the paths, an input symbol arrives that does not appear as a
label of any edge going out from the reached state, that
machine-copy is stopped

• It becomes inactive

• If any of the copies of the machine reaches the final state,
the input string is accepted, i.e. recognized

71/147

Bit-parallelism and exact search

• Any NFA can be transformed to a DFA

• The general transformation algorithm has exponential
complexity with respect to the length of the string
determining the NFA

• We consider a simple special case, where this
transformation can be performed in polynomial time

72/147

Bit-parallelism and exact search

• NFA can be presented in two ways

• With 𝜀-transitions

• Without 𝜀-transitions

• 𝜀-transitions

• Transitions that do not consume any input

• In both cases (with or without 𝜀-transitions), such an
NFA recognizes all the suffixes of the corresponding
search pattern

73/147

Bit-parallelism and exact search

• Without 𝜀-transitions

• In the state 0, the NFA expects the first symbol of the search
pattern in the search string

• We say that 0 is always an active state

• If a machine is made inactive while at the state 𝑥, we say
that 𝑥 is an inactive state

74/147

Bit-parallelism and exact search

• Example – the search pattern is 𝑤 = aabcc

• The NFA without 𝜀-transitions corresponding to 𝑤

• Each input symbol (i.e. the next symbol from the search
string) drives creation of a new copy of the NFA, which
starts at the state 0

75/147

Bit-parallelism and exact search

• With 𝜀-transitions (1)

• After receiving an input string, an active state of such a
machine is the one that corresponds to the end of some
path (if it exists) starting from the initial state to that state

76/147

Bit-parallelism and exact search

• With 𝜀-transitions (2)

• Example – the search pattern is 𝑤 = aabcc

• The NFA with 𝜀-transitions corresponding to 𝑤

• After the input string a, the active states will be 1 and 2

• After receiving aab, the active state will be 3

• After receiving aba, there will be no active states

77/147

Bit-parallelism and exact search

• Suppose now that the search string is 𝑆 = aaabcaabcc
and we are searching for the pattern 𝑤 = aabcc in it by
means of the NFA without 𝜀-transitions

• Each time a symbol from 𝑆 arrives, the machine makes
a copy of itself and starts from the 0 state

78/147

Bit-parallelism and exact search

• We are simulating the NFA

• The maximum number of machines running in parallel is
𝑚 = |𝑤|, in our example 𝑚 = 5

• Denote by 𝑗 the number of processed symbols from 𝑆

• Then, we have min(𝑗,𝑚) machines running in parallel, for
each 𝑗

• After processing 𝑗 symbols from 𝑆, some of these
machines are active and some are inactive

79/147

Bit-parallelism and exact search

• Define search status in a computer word 𝐷 of 𝑚 bits

• In our case 𝐷 = 𝑑5𝑑4𝑑3𝑑2𝑑1

• We set 𝑑𝑖 = 1 if the machine 𝑖 is active after processing
𝑗 bits of 𝑆

• All the machines are active at the time of creation
(since they are all in the state 0)

80/147

Bit-parallelism and exact search

81/147

Bit-parallelism and exact search

• Passing from 𝑗 = 5 to 𝑗 = 6, the bit 𝑑5 disappears, since
we can have maximum 𝑚 machines at a time

• This fact is expressed by shifting the word 𝐷 one position to
the left (𝑑4 becomes 𝑑5, 𝑑3 becomes 𝑑4, etc.)

• At the same time, a new machine is created
corresponding to the bit 𝑑1, which starts from the state
0 (always active)

• This fact is expressed by OR-ing the word 𝐷, shifted to the
left, with 0𝑚−11 (in our case 𝑚 = 5 so we OR with 00001)

82/147

Bit-parallelism and exact search

• In our example, when passing from 𝑗 = 5 to 𝑗 = 6, the
next symbol from 𝑆 to be processed is a

• Which input symbol will keep which machine active, if it
was active before processing that symbol?

• An a will always keep the machine 𝑑1 active, an a will keep
the machine 𝑑2 active, a b will keep the machine 𝑑3 active, a
c will keep the machine 𝑑4 active, a c will keep the machine
𝑑5 active – it is always the same, can be pre-computed

83/147

Bit-parallelism and exact search

• We can use this for updating the search status word 𝐷
automatically, after each shift left and OR-ing with 1, by
introducing the pre-computed bit masks

84/147

Bit-parallelism and exact search

• The bit mask for any symbol only depends on the
search pattern, not on the search string

• Because of that, we can pre-compute the bit masks for
all the symbols from the pattern 𝑤

• Given the search pattern 𝑤 = 𝑤1𝑤2…𝑤𝑚, for the bit
mask 𝐵[𝑠] = 𝑏1𝑏2…𝑏𝑚 the following holds

• If 𝑠 = 𝑤𝑖 then 𝑏𝑚+1−𝑖 = 1, otherwise 𝑏𝑚+1−𝑖 = 0

85/147

Bit-parallelism and exact search

• In our example, since 𝑤 = aabcc, it is easy to see that
𝐵[𝑎] = 00011
𝐵[𝑏] = 00100
𝐵[𝑐] = 11000

• We can now update the search status word 𝐷 for each
new input symbol 𝑆𝑗 in the following way

𝐷𝑗 = ((𝐷𝑗−1 << 1) 𝑂𝑅 1) 𝐴𝑁𝐷 𝐵[𝑆𝑗]

86/147

Bit-parallelism and exact search

• For 𝑗 = 6, we have

𝐷6 = ((𝐷5 << 1) 𝑂𝑅 1) 𝐴𝑁𝐷 𝐵[𝑆6] =

= ((01000 << 1) 𝑂𝑅 00001) 𝐴𝑁𝐷 𝐵[𝑎] =

= 10001 𝐴𝑁𝐷 00011 = 00001

87/147

Bit-parallelism and exact search

• The Shift-AND algorithm (Baeza-Yates, Gonnet, 1992)

• The same formula for updating the search status word 𝐷

𝐷𝑗 = ((𝐷𝑗−1 << 1) 𝑂𝑅 1) 𝐴𝑁𝐷 𝐵[𝑆𝑗]

• A match is reported if 𝑑𝑚 = 1 (i.e. MSB=1), for some 𝑗

• That would mean that the machine 𝑑𝑚 has processed 𝑚 symbols
from 𝑆 and is still active, i.e. it has reached the final state

88/147

Bit-parallelism and exact search

• Example (1)

• 𝑤 = origin, 𝑆 = original

• The bit masks

𝐵 𝑜 = 000001

𝐵 𝑟 = 000010

𝐵 𝑖 = 010100

𝐵 𝑔 = 001000

𝐵 𝑛 = 100000

• The search status word 𝐷 = 000000

89/147

Bit-parallelism and exact search

• Example (2)

• The first character from the search string

𝑆 1 = ‘o’

• The corresponding bit mask
𝐵 𝑆 1 = 𝐵 𝑜 = 000001

• The search status word after processing the character ‘o’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 𝑜

𝐷 ← (000000 ≪ 1 OR 000001) AND 000001 = 000001

90/147

Bit-parallelism and exact search

• Example (3)

• The second character from the search string

𝑆 2 = ‘r’

• The corresponding bit mask
𝐵 𝑆 2 = 𝐵 𝑟 = 000010

• The search status word after processing the character ‘r’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 𝑟

𝐷 ← (000001 ≪ 1 OR 000001) AND 000010 = 000010

91/147

Bit-parallelism and exact search

• Example (4)

• The third character from the search string

𝑆 3 = ‘i’

• The corresponding bit mask
𝐵 𝑆 3 = 𝐵 𝑖 = 010100

• The search status word after processing the character ‘i’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 𝑖

𝐷 ← (000010 ≪ 1 OR 000001) AND 010100 = 000100

92/147

Bit-parallelism and exact search

• Example (5)

• The fourth character from the search string

𝑆 4 = ‘g’

• The corresponding bit mask
𝐵 𝑆 4 = 𝐵 𝑔 = 001000

• The search status word after processing the character ‘g’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 𝑔

𝐷 ← (000100 ≪ 1 OR 000001) AND 001000 = 001000

93/147

Bit-parallelism and exact search

• Example (6)

• The fifth character from the search string

𝑆 5 = ‘i’

• The corresponding bit mask
𝐵 𝑆 5 = 𝐵 𝑖 = 010100

• The search status word after processing the character ‘i’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 𝑖

𝐷 ← (001000 ≪ 1 OR 000001) AND 010100 = 010000

94/147

Bit-parallelism and exact search

• Example (7)

• The sixth character from the search string

𝑆 6 = ‘n’

• The corresponding bit mask
𝐵 𝑆 6 = 𝐵 𝑛 = 100000

• The search status word after processing the character ‘n’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 𝑛

𝐷 ← (010000 ≪ 1 OR 000001) AND 100000 = 100000

• The MSB of 𝐷 is 1 – search pattern 𝑤 found at the position 6 in 𝑆

95/147

Bit-parallelism and exact search

• Example (8)

• The seventh character from the search string

𝑆 7 = ‘a’

• The corresponding bit mask
𝐵 𝑆 7 = 𝐵 ∗ = 000000

• The search status word after processing the character ‘a’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 ∗

𝐷 ← (100000 ≪ 1 OR 000001) AND 000000 = 000000

96/147

Bit-parallelism and exact search

• Example (9)

• The eighth character from the search string

𝑆 8 = ‘l’

• The corresponding bit mask
𝐵 𝑆 8 = 𝐵 ∗ = 000000

• The search status word after processing the character ‘l’

𝐷 ← (𝐷 ≪ 1 OR 000001) AND 𝐵 ∗

𝐷 ← (000000 ≪ 1 OR 000001) AND 000000 = 000000

97/147

Bit-parallelism and exact search

• The Shift-OR algorithm (1)

• Very similar to Shift-AND

• Often considered a special implementation of Shift-AND

• Complements the bit masks for each symbol

• Complements the search status word 𝐷

• 𝑑𝑖 = 0 means an active machine

• In that case, OR-ing with 1 is not necessary

• More efficient than Shift-AND – fewer logical operations after
shifting the search status word

98/147

Bit-parallelism and exact search

• The Shift-OR algorithm (2)

• The search status word update formula is

𝐷𝑗 = (𝐷𝑗−1 << 1) 𝑂𝑅 𝐵[𝑆𝑗]

• A match is reported if 𝑑𝑚 = 0 (i.e. MSB=0), for some 𝑗

99/147

Bit-parallelism and exact search

• Example (1)

• 𝑤 = origin, 𝑆 = original

• The bit masks

𝐵 𝑜 = 111110

𝐵 𝑟 = 111101

𝐵 𝑖 = 101011

𝐵 𝑔 = 110111

𝐵 𝑛 = 011111

• The search status word 𝐷 = 111111

100/147

Bit-parallelism and exact search

• Example (2)

• The first character from the search string

𝑆 1 = ‘o’

• The corresponding bit mask
𝐵 𝑆 1 = 𝐵 𝑜 = 111110

• The search status word after processing the character ‘o’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 𝑜

𝐷 ← 111111 ≪ 1 OR 111110 = 111110

101/147

Bit-parallelism and exact search

• Example (3)

• The second character from the search string

𝑆 2 = ‘r’

• The corresponding bit mask
𝐵 𝑆 2 = 𝐵 𝑟 = 111101

• The search status word after processing the character ‘r’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 𝑟

𝐷 ← 111110 ≪ 1 OR 111101 = 111101

102/147

Bit-parallelism and exact search

• Example (4)

• The third character from the search string

𝑆 3 = ‘i’

• The corresponding bit mask
𝐵 𝑆 3 = 𝐵 𝑖 = 101011

• The search status word after processing the character ‘i’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 𝑖

𝐷 ← 111101 ≪ 1 OR 101011 = 111011

103/147

Bit-parallelism and exact search

• Example (5)

• The fourth character from the search string

𝑆 4 = ‘g’

• The corresponding bit mask
𝐵 𝑆 4 = 𝐵 𝑔 = 110111

• The search status word after processing the character ‘g’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 𝑔

𝐷 ← 111011 ≪ 1 OR 110111 = 110111

104/147

Bit-parallelism and exact search

• Example (6)

• The fifth character from the search string

𝑆 5 = ‘i’

• The corresponding bit mask
𝐵 𝑆 5 = 𝐵 𝑖 = 101011

• The search status word after processing the character ‘i’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 𝑖

𝐷 ← 110111 ≪ 1 OR 101011 = 101111

105/147

Bit-parallelism and exact search

• Example (7)

• The sixth character from the search string

𝑆 6 = ‘n’

• The corresponding bit mask
𝐵 𝑆 6 = 𝐵 𝑛 = 011111

• The search status word after processing the character ‘n’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 𝑛

𝐷 ← 101111 ≪ 1 OR 011111 = 011111

• The MSB of 𝐷 is 0 – search pattern 𝑤 found at the position 6 in 𝑆

106/147

Bit-parallelism and exact search

• Example (8)

• The seventh character from the search string

𝑆 7 = ‘a’

• The corresponding bit mask
𝐵 𝑆 7 = 𝐵 ∗ = 111111

• The search status word after processing the character ‘a’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 ∗

𝐷 ← 011111 ≪ 1 OR 111111 = 111111

107/147

Bit-parallelism and exact search

• Example (9)

• The eighth character from the search string

𝑆 8 = ‘l’

• The corresponding bit mask
𝐵 𝑆 8 = 𝐵 ∗ = 111111

• The search status word after processing the character ‘l’

𝐷 ← 𝐷 ≪ 1 OR 𝐵 ∗

𝐷 ← 111111 ≪ 1 OR 111111 = 111111

108/147

Bit-parallelism and exact search

• The worst-case and the average-case time complexities
of the algorithm Shift-AND / Shift-OR are the same

• Resistant to algorithmic attacks

• Slower on average than some other algorithms from the
category of bit-parallel search algorithms (e.g. BNDM,
BNDM𝑞)

109/147

Bit-parallelism and exact search

• BNDM (Backward Non-deterministic DAWG Matching)

• DAWG – Directed Acyclic Word Graph

• A graph that can be assigned to any string

• It can be shown that a DAWG is equivalent to the DFA
corresponding to the NFA assigned to the same string

• DAWG is sometimes called suffix automaton

110/147

Bit-parallelism and exact search

• Example – the DAWG corresponding to 𝑤 = aabcc

111/147

Bit-parallelism and exact search

• BNDM𝑞 – a small modification of BNDM

• Faster than BNDM since it processes more (𝑞) input
characters at a time

• BNDM and BNDM𝑞 are so-called skip algorithms

• Average-case time complexity better than the worst-case
time complexity

• Consequently, sensitive to algorithmic attacks

• Not good for application in IDS

• Tried in Suricata and later abandoned

112/147

Approximate search in IDS

• Most misuse-based IDS employ exact search

• Fast

• Reliable

• However, useless for detection of zero-day attacks

• A single bit of change is enough to evade such an IDS

113/147

Approximate search in IDS

• Example – A Snort rule

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:
"NETBIOS SMB CD.."; flow: to_server,established; content:
"|5C|../|00 00 00|";)

• The content field defines the search pattern

• In this case "|5C|../|00 00 00|"

• If attack traffic is changed to contain "|5C|../|20 00 00|"

• Only one bit changed

• Same attack, but not detected with this rule

114/147

Approximate search in IDS

• Possible solutions to this problem

• Make a new signature for every variant of an old attack

• Current situation in IDS

• Inefficient, impossible for zero-day attacks

• Use approximate search

• Problem – false positives and false negatives due to not taking
into account the fact that only small (limited) changes with
specific distribution on the old attack patterns are possible

• If big changes, traffic could become harmless – no attack

• For taking this into account – constrained approximate search

115/147

Approximate search in IDS

• Definition – approximate matching (1)

• String matching allowing up to 𝑘 errors (substituted,
inserted or deleted characters)

• Edit distance (Levenshtein 1965)

• Minimum number of elementary edit operations (substitutions,
deletions, and insertions) needed to transform one string into
another

116/147

Approximate search in IDS

• Definition – approximate matching (2)

• Then, approximate matching is reduced to finding all
occurrences of the distorted search pattern 𝑤′ in the search
string 𝑆 such that the edit distance 𝑒𝑑 𝑤,𝑤′ ≤ 𝑘

• The distortion of 𝑤′ is carried out by deleting, inserting, or
substituting characters

117/147

Approximate search in IDS

• Definition – approximate matching (3)

• Substitution of a character by itself (a match) does not
usually contribute to the increase of edit distance

• In most applications (except in computational biology), it is
enough to assign the elementary distance equal to 1 to an
ordinary substitution and 0 to a character match

118/147

Approximate search in IDS

• Example – edit distance

𝑋 = surgery, 𝑌 = survey, 𝑒𝑑 𝑋, 𝑌 = 2

• Edit sequence

•  is called the empty symbol

• Used for presenting deletions and insertions

119/147

Approximate search in IDS

• Example – approximate matching

𝑤 = surv, 𝑆 = xxxxxsurgery, 𝑘 = 2

• Edit sequence (𝑤′ = surg, 𝑒𝑑 𝑤′, 𝑤 = 1 < 𝑘)

• The elementary edit operations to the left of the first
vertical line and to the right of the second vertical line do
not count

• We are looking for the pattern anywhere in the search string

120/147

Approximate search in IDS

• Two approaches to approximate matching

• Dynamic programming

• Simulation of an NFA (bit-parallelism)

121/147

Approximate search in IDS

• Dynamic programming approach (1)

• A matrix of partial edit distances is used

• The cell 𝑖, 𝑗 contains edit distance between the prefix of
the string 𝑋 of length 𝑖 and the prefix of the string 𝑌 of
length 𝑗

• The value in a cell is computed on the basis of the
previously computed values in other cells

122/147

Approximate search in IDS

• Dynamic programming approach (2)

• Computation of edit distance between 𝑋 and 𝑌

𝑑𝑖,𝑗 = ൝
𝑑𝑖−1,𝑗−1, 𝑥𝑖= 𝑦𝑗

1 + min 𝑑𝑖−1,𝑗−1, 𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1 , otherwise

123/147

Approximate search in IDS

• Dynamic programming approach (3)

• Example, 𝑋 = annual, 𝑌 = annealing, 𝑒𝑑 𝑋, 𝑌 = 4

a n n ø u

a n n e a

a n n ø ø u

a n n e a ø

a n n u ø

a n n e a

𝑑 = 2

𝑑 = 2

𝑑 = 3

124/147

Approximate search in IDS

• Dynamic programming approach (4)

• Approximate search

• We use the same computation formula for edit distance

𝑑𝑖,𝑗 = ൝
𝑑𝑖−1,𝑗−1, 𝑥𝑖= 𝑦𝑗

1 + min 𝑑𝑖−1,𝑗−1, 𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1 , otherwise

• The initialization is different

• We fill the first row with zeros, which reflects the fact that the
computation of the edit distance can start at any position in the
search string

125/147

Approximate search in IDS

• Dynamic programming approach (5)

• 𝑤 = annual, 𝑆 = annealing, 𝑘 = 2

126/147

Approximate search in IDS

• Simulation of an NFA (bit-parallelism) (1)

• The NFA (1)

• Has a matrix form (2-dimensional)

• The state (0,0) has a self-loop

• Reflects the fact that the search pattern can start at any position in
the search string

• Horizontal transition means a match (we advance 1 character in
the search pattern and in the search string)

• Vertical transition means an insertion (we advance 1 character in
the search string but we do not advance in the search pattern)

127/147

Approximate search in IDS

• Simulation of an NFA (bit-parallelism) (2)

• The NFA (2)

• Diagonal transition with a solid line means an ordinary
substitution (we advance 1 character in the search pattern and in
the search string)

• Diagonal transition with a dashed line means a deletion (we
advance 1 character in the search pattern but we do not advance
in the search string)

• Dashed lines represent 𝜀 transitions

128/147

Approximate search in IDS

• Simulation of an NFA (bit-parallelism) (3)

• Example, 𝑤 = annual, 𝑆 = anneal (1)

129/147

Approximate search in IDS

• Two groups of matching algorithms

• Row-based Bit-Parallelism (RBP)

• Diagonal-based Bit-Parallelism (DBP)

130/147

Approximate search in IDS

• The Row-based Bit-Parallelism (RBP) algorithm (1)

• Wu, Manber, 1992

• Unconstrained approximate search allowing up to 𝑘 errors

• The algorithm updates the matrix associated with the
search pattern, row by row, after processing each character
of the search string

• If a final state becomes active in any row, an occurrence is
reported

131/147

Approximate search in IDS

• The Row-based Bit-Parallelism (RBP) algorithm (2)

• We only consider the Shift-OR variant (more efficient)

• The row-based matrix update formula (𝑅𝑖 denotes the 𝑖-th
row of the matrix, 𝑗 is the index of the current processed
character from the search string 𝑆, 𝑖 = 1,… , 𝑘 is the
number of errors)

132/147

Approximate search in IDS

• The Row-based Bit-Parallelism (RBP) algorithm (3)
𝑅0
′ = 𝑅0 ≪ 1 𝑂𝑅 𝐵 𝑆𝑗

𝑅𝑖
′ = 𝑅𝑖 ≪ 1 𝑂𝑅 𝐵 𝑆𝑗 𝐴𝑁𝐷

𝑅𝑖−1 𝐴𝑁𝐷

𝑅𝑖−1 ≪ 1 𝑂𝑅 𝑁𝑂𝑇 𝐵 𝑆𝑗 𝐴𝑁𝐷

𝑅𝑖−1
′ ≪ 1

No errors

match

ins

sub

del

Initialization: 𝑅0 all zeros, 𝑅1 one 1 rightmost, 𝑅2 two 1s rightmost, …, 𝑅𝑘 𝑘 1s rightmost

133/147

Approximate search in IDS

• The attack scenario (1)

• To modify the old attack pattern, the attacker uses a tool (1)

• Cannot delete more than e characters in total

• Cannot insert more than i characters in total

• Cannot substitute more than s characters in total

134/147

Approximate search in IDS

• The attack scenario (2)

• To modify the old attack pattern, the attacker uses a tool (2)

Or

• Cannot have more than d indels (insertions+deletions) in total

135/147

Approximate search in IDS

• The attack scenario (3)

• To modify the old attack pattern, the attacker uses a tool (3)

Or

• Cannot delete more than E characters at a time

• Cannot insert more than I characters at a time

136/147

Approximate search in IDS

• With such an attack scenario

• Small changes in original attack traffic

• If big changes, traffic could become harmless

• Also distribution of changes matters (e.g. < 𝐸 deletions at a time)

• Unconstrained approximate search cares only about the
number of changes

• Consequence – false positives

137/147

Approximate search in IDS

• Constrained approximate search (1)

• To reduce false positive rate, introduce constraints

• Related to a-priori knowledge about the parameters of the traffic
modification tool used by the attacker

• If guessed well, reduces the false positive rate

• Realization in the search algorithm – depends on constraint type

• Introduce various counters and additional bit masks

• Small changes in the original traffic –> small overhead

• Counter assigned to each cell of the NFA array

138/147

Approximate search in IDS

• Constrained approximate search (2)

• Constrained string editing (1)

• Dynamic programming (Wagner, Fisher, 1974) – original algorithm

• Quadratic time/space complexity

• Example

• Transform the string 𝑋 of length 𝑛 to the string 𝑌 of length 𝑚

• Elementary edit operations - substitutions, insertions, deletions

• Then, the prefix 𝑋𝑖 is transformed to the prefix 𝑌𝑗

• 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚 are the coordinates

• Complicated to introduce various constraints

139/147

Approximate search in IDS

• Constrained approximate search (3)

• Constrained string editing (2)

• The formula with the coordinates 𝑖, 𝑗 (Wagner, Fisher, 1974)

𝑑𝑖,𝑗 = ൝
𝑑𝑖−1,𝑗−1, 𝑥𝑖= 𝑦𝑗

1 + min 𝑑𝑖−1,𝑗−1, 𝑑𝑖−1,𝑗 , 𝑑𝑖,𝑗−1 , otherwise

• Alternative formulation

𝑑𝑖,𝑗 = min 𝑑𝑖−1,𝑗−1 + 𝑑𝑠, 𝑑𝑖−1,𝑗 + 1, 𝑑𝑖,𝑗−1 + 1 ,

where 𝑑𝑠 = 0 if 𝑥𝑖 = 𝑦𝑗, otherwise 𝑑𝑠 = 1

• Unconstrained

140/147

Approximate search in IDS

• Constrained approximate search (4)

• Constrained string editing (3)

• Changing the coordinates (Oommen, 1986)

• The new coordinates are the numbers of elementary edit
operations, not the prefix lengths

• The number of insertions 𝑖, the number of substitutions 𝑠, the
number of deletions 𝑒

• Three-dimensional dynamic programming array

• More complicated than the original algorithm (two-dimensional)

• But, easier to define various constraints

141/147

Approximate search in IDS

• Constrained approximate search (5)

• Constrained string editing (4)

• With the 𝑖, 𝑒, 𝑠 coordinates – constrained by default

• The prefix 𝑋𝑒+𝑠 is transformed to the prefix 𝑌𝑖+𝑠

𝑊 𝑖, 𝑒, 𝑠 = 𝑚𝑖𝑛 ൞

𝑊 𝑖, 𝑒, 𝑠 − 1 + 𝑑 𝑋𝑒+𝑠 , 𝑌𝑖+𝑠 ,

𝑊 𝑖 − 1, 𝑒, 𝑠 + 𝑑 𝜙, 𝑌𝑖+𝑠 ,

𝑊 𝑖, 𝑒 − 1, 𝑠 + 𝑑 𝑋𝑒+𝑠, 𝜙

• 𝜙 is the empty symbol

• 𝑑 𝑋𝑒+𝑠, 𝑌𝑖+𝑠 is the substitution cost, 𝑑 𝜙, 𝑌𝑖+𝑠 is the insertion
cost, 𝑑 𝑋𝑒+𝑠, 𝜙 is the deletion cost

142/147

Approximate search in IDS

• Constrained approximate search (6)

• Constrained string editing (5)

• Constraints – it can be shown that the constraints on the number
of deletions and substitutions are related with the constraint on
the number of insertions (Oommen, 1986)

• Let 𝑁 be the length of 𝑋 and let 𝑀 be the length of 𝑌

• Then, given the number of insertions 𝑖

• The number of deletions must be 𝑁 −𝑀 + 𝑖

• The number of substitutions must be 𝑀 − 𝑖

143/147

Approximate search in IDS

• Constrained approximate search (7)

• Constrained string editing (6)

• Thus, given the set ℐ of the permitted values for 𝑖, the
constrained edit distance between 𝑋 and 𝑌 is given by

𝐷 𝑋, 𝑌 = min
𝑖∈ℐ

𝑊 𝑖,𝑁 −𝑀 + 𝑖,𝑀 − 𝑖

• ℐ is a subset of the set

max 0,𝑀 − 𝑁 ,… ,𝑀

• If ℐ = max 0,𝑀 − 𝑁 ,… ,𝑀 exactly, then we get the
unconstrained edit distance

144/147

Approximate search in IDS

• Constrained approximate search (8)

• Constraints on the run lengths of insertions/deletions (1)

• Cannot delete more than 𝐸 symbols at a time

• Cannot insert more than 𝐼 symbols at a time

• With the coordinates 𝑖, 𝑒, 𝑠

• Much easier to introduce these types of constraints

145/147

Approximate search in IDS

• Constrained approximate search (9)

• Constraints on the run lengths of insertions/deletions (2)

• The formula for computing the elements of the constrained edit
distance array 𝑊

𝑊 𝑖, 𝑒, 𝑠
= min 𝑊 𝑖 − 𝑖1, 𝑒 − 𝑒1, 𝑠 − 1 + 𝑒1𝑑𝐸 + 𝑖1𝑑𝐼 + 𝑑 𝑥𝑒+𝑠, 𝑦𝑖+𝑠

where

max 0, 𝑒 − min 𝑛 − 𝑠, 𝑠 − 1 𝐸 ≤ 𝑒1 ≤ min 𝑒, 𝐸

max 0, 𝑖 − min 𝑚 − 𝑠, 𝑠 − 1 𝐼 ≤ 𝑖1 ≤ min 𝑖, 𝐼

𝑠 = 1, … 𝑠max, 𝑒 = 0,…min 𝑛 − 𝑠, 𝑠𝐸 , 𝑖 = 0,… ,min 𝑚 − 𝑠, 𝑠𝐼

146/147

Approximate search in IDS

• Constrained approximate search (9)

• The bit-parallel RBP approach also possible

• Search status array update formula for any value of 𝐸 and 𝐼
not ready yet

• A special case is ready

• No insertions

• 𝐸 = 1

• Used in cryptanalysis of pseudorandom generator schemes
employing irregularly clocked Linear Feedback Shift Registers
(LFSRs)

147/147

Approximate search in IDS

• Constrained approximate search (10)

• The search status word update formula, 𝐸 = 1

