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Motivation I: Post-Quantum Cryptography

I Quantum computers break cryptosystems based on the
hardness of factoring and discrete log—e.g., RSA, ECC.

I Post-quantum candidates: lattice-based, code-based,
hash-based, multivariate crypto, isogeny.
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Motivation II: McEliece Framework

The McEliece PKC (General Framework)

Key Generation: Generate the public key as Gpub and the private key as a 3-tuple (S,G,P) where,
G: a k × n generator matrix of an linear code C over Fq with efficient decoding up
to t errors. (A binary Goppa code with minimum distance d ≥ 2t + 1 in the
original proposal).
S: a k × k random non-singular matrix called the scramble matrix.
P: an n × n random permutation matrix.
Gpub : the k × n matrix SGP.

Encryption: For a plaintext m ∈ Fkq , generate a vector e ∈ Fnq with weight t at random and

compute the ciphertext c ∈ Fnq as c = mGpub + e.

Decryption: For a ciphertext c ∈ Fnq , first compute cP−1 = (mS)G + eP−1. We then recover
mS using the decoding algorithm of C and subsequently recover the plaintext since
S is invertible.

I Code-based cryptosystems—starting from McEliece using
binary Goppa codes [McEliece 1978].

I Main drawback: large key-size.
I “Don’t put all your eggs in one basket”.
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Motivation III: QC-MDPC

I Many attempts.
I GRS codes, Rank-metric codes, Convolutional codes ...
I Little structure can be used.

I ’Happy’ to use: smallness or sparsity.
– Computational syndrome decoding (CSD) problem.
– Shortest vector problem (SVP) in lattice.
– Rank syndrome decoding (an analogy) in rank metric.

I Have to use: ring-structure, (Q)C-structure, ...

I An important variant: QC-MDPC [Misoczki, Tillich, Sendrier,
Barreto 2013].
I Much smaller key-size: 4801 bits for 80-bit security.

– More compact than QC-LDPC.
I good security arguments (very little structure).
I easy implementation (including lightweight implementation)

[Heyse, von Maurich, Güneysu, 2013].
I A scheme recommended for further study.

I Our goal: to recover the secret key
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QC-MDPC Codes

Quasi-cyclic Codes

Suppose n = n0r . An [n, n− r ]-linear code C over F2 is quasi-cyclic
if every cyclic shift of a codeword by n0 steps remains a codeword.

We assume that n0 = 2 throughout the remaining slides.
I For convenience, we write

H = [H0|H1] ,

G = [I|P] =
[
I|(H−1

1 H0)T
]
.

where Hi are circulant matrices (defined by its first row).
I Operations can be viewed in the polynomial ring

F2[x ]/〈x r − 1〉.

h0(x), h1(x), p(x) = h0(x)/h1(x), . . .

I The polynomial h0(x) can also be represented by a vector h0.

Qian Guo, 6 / 27



QC-MDPC Codes

LDPC/MDPC Codes

A Low Density Parity-Check Code (LDPC) is a linear code
admitting a sparse parity-check matrix, while a Moderate Density
Parity-Check Code (MDPC) is a linear code with a denser but still
sparse parity-check matrix.

I LDPC codes are with small constant row weights.
I MDPC codes with row weights scale in O(

√
n log n).

QC-MDPC Codes

A QC-MDPC code is a quasi-cyclic MDPC code with row weight ŵ .
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The QC-MDPC PKC Scheme

I KeyGen():
I Generate a parity-check matrix H = [H0|H1] for a binary

QC-MDPC code with row weight ŵ .
I Derive the systematic generator matrix G = [I|P], where

P = (H−1
1 H0)T .

I The public key: G. The private key: H.
I EncG(m):

I Generate a random error vector e with weight t.
I The ciphertext is c = mG + e.

I DecH(c):
I Compute the syndrome vector s = cHT = eHT, and then use

an iterative decoder to extract the noise e.
I Recover the plaintext m from the first k entries of mG.
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CCA-Secure Version

I Extending the security model beyond CPA:
I Resend attacks, reaction attacks, chosen ciphertext attacks,...

I To cope with CCA, one can use a CCA conversion, e.g., the
one suggested by Kobara, Imai in 2001.
I The CCA conversion makes the choice of error vector e

"random".

Suggested parameters for 80-bit security:

n = 9602, k = r = 4801, ŵ = 90, t = 84 public key: 4801 bits
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Iterative Decoding: Gallager’s Bit-Flipping Strategy

E1 E2 E3 E4 E5 E6 E7
digit nodes

check nodes
C1 C2 C3

cHT = (v + e)HT = eHT = s

I Start with Tanner graph for H, initial syndrome s and set digit
nodes to zero. Add a counter to each digit node.

I For the t th iteration:
I Run through all parity-check equations and for every digit node connected

to an unsatisfied check node, increase its corresponding counter by one.
I Run through all digit nodes and flip its value if its counter satisfies a

certain constraint, e.g., the counter surpasses a threshold.
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Basic Scenario

Alice Bob
EpkBob(mi )

i = 1, . . .

Alice Bob“YES” or ⊥

I In terms of a security model definition, the attack is called a
reaction attack.

I A weaker model than CCA (a stronger attack).
I Resend and reaction attacks on McEliece PKC have appeared

before. However, they have only targeted message recovery.
I Key recovery: to recover h0.

I Show: Decoding error probabilities for different error patterns
⇒ the private key h0.
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Key-Related Property: Distance Spectrum (DS)

Distance Spectrum (DS)

The distance spectrum for h0, denoted D(h0), is given as

D(h0) = {d : 1 ≤ d ≤ b r
2
c,∃ a pair of ones with distance d in cyc(h0)}.

Here cyc(h0) includes all cyclic shifts of h0. Since a distance d can
appear many times in h0, we introduce the multiplicity µ(d).

As an example, for the bit pattern c = 0011001 we have r = 7 and
1 ≤ d ≤ 3. Thus,

D(c) = {1, 3} ,

with distance multiplicities µ(1) = 1, µ(2) = 0 and µ(3) = 2.

I D(h0) ⇒ the private key h0.
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Reconstruction of h0 from DS

0 i0 i1 i2 · · ·

Assuming D(h0) is known, we can reconstruct h0.
I Start by assigning the first two ones in a length i0 vector in position 0 and i0,

where i0 is the smallest value in D(h0).
I Put the third one in a position and test if the two distances between this third

one and the previous two ones both appear in the distance spectrum. If they do
not, we test the next position for the third bit.

I If they do, we move to test the fourth bit and its distances to the previous three
ones, etc.

In expectation, it is efficient.
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Main Observation

The Problem
Decoding error probabilities for different error patterns ⇒ D(h0)?

Main Observation
For a distance d , consider the error patterns with at least one pair
of ones at distance d . Then, the decoding error probability when
d ∈ D(h0) is smaller than that if d 6∈ D(h0).
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On Plain QC-MDPC (CPA)

I Ψd is the set of all binary vectors of length n = 2r having
exactly t ones, where all the t ones are placed as pairs with
distance d in the first half of the vector.

e = (00 · · · 01 00 · · · 0︸ ︷︷ ︸
d−1

100 · · · 01 00 · · · 0︸ ︷︷ ︸
d−1

100 · · · 0, 00 · · · 0)

Attack

I Alice will send messages to Bob, with error selected from Ψd .
I When there is a decoding error with Bob, she will record this

and after M messages she will be able to compute an empirical
decoding error probability for the subset Ψd .

I Alice will repeat for d = 1, 2, . . . ,U.
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How to Decide Multiplicity µ(d)

m3 m2 m1 m0
error prob.

(a)

m1 = 9.1 m0 = 44.1
error prob. 10−4

(b)

Figure: Classification of distance multiplicities based on decoding error
probability. (a): Distribution shape in general. (b): Empirical distribution
using M = 100, 000 decoding trials for each distance (proposed
parameters for 80-bit security with t = 84).
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Computing DS

Input: parameters n, r ,w and t of the underlying QC-MDPC
scheme, M = trials per distance.
Output: distance spectrum D(h0).

For all distances d
I Try M decoding trials using the designed error pattern
I Perform statistical test to decide multiplicity µ(d)

I If µ(d) 6= 0, add d with multiplicity µ(d) to distance
spectrum D(h0)

The complexity is O(M · U).
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Attack on CCA-Secure QC-MDPC

We can no longer control the error.
I Form different subsets with desired error patterns.

I For a distance d , error patterns that contain at least one
occurrence of distance d between error bits are chosen.

I These subsets can still be used to efficiently distinguish
whether a certain distance d appears in the distance spectrum
of h0.
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Attack in the CCA case

Input: a collection of T ciphertexts (denoted Σ).
Output: distance spectrum D(h0).

Record decryptability for each c ∈ Σ
s← storage for distance spectrum of secret key
For all distances d

Σd ← {c ∈ Σ | µc (d) ≥ 1}
s[d ]← multiplicity classification from decryptability rate in Σd

Return s

µc (d) is the number of pairs of ones with distance d in the error
vector for ciphertext c .

The complexity is O(T · r2).
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An Explanation for the Distinguishing Procedure

Error patterns are from Ψd . Let w = wt(h0).
I The first iteration plays a vital role in the decoding process
I jth parity check :

∑n−1
i=0 hijei = sj

I If we look at all the r parity checks in H, we will create a total of
exactly t · w nonzero terms hijei in the parity checks all together.

I Putting t ·w different objects in r buckets and counting the number
of objects in each bucket. An even number of objects in a bucket
will be helpful in decoding; an odd number of objects will act in
opposite.

Table: The relation between the number of nonzero hijei ’s and that of
correctly changed counters in the first decoding iteration.

# (hijei = 1) #(right change) #(wrong change)

0 w 0
1 1 w − 1
2 w − 2 2
3 3 w − 3
...

...
...

Qian Guo, 19 / 27



An Explanation for the Distinguishing Procedure

I If h0 contains two ones with distance d inbetween (CASE-1),
we have "artificially" created cases where we know that we
have at least two nonzero terms hijei in the parity check.

I This "artificial" creation of pairs of nonzero terms hijei in the
same check equation changes the distribution of the number of
nonzero terms hijei in parity checks.

Table: The distinct distributions of the number of nonzero terms hijei ’s
for the error patterns from Ψd using the QC-MDPC parameters for 80-bit
security and assuming that the weight of h0 is exactly 45.

# (hijei = 1) Probability

CASE-0 CASE-1

0 0.4485 0.4534 ↑
1 0.3663 0.3602 ↓
≥ 2 0.1852 0.1864
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Results—Reconstruction of h0 from DS

80 bit security: n = 9602, k = r = 4801, ŵ = 90, t = 84 with
(simplest) Gallager bit-flipping

Reconstruction of h0 from the DS:
I It takes in expectation 235 operations.
I It can be slow in the worst-case.

In practice:
I We perform 3000 trials using a single core of a personal

computer.
I The implementation is unoptimised.
I It takes 144 seconds on average.
I The worst case: 49 minutes.
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Results—Obtaining DS in the CPA Case

80 bit security: n = 9602, k = r = 4801, ŵ = 90, t = 84 with
(simplest) Gallager bit-flipping

Table: Decoding error rates when using the original Gallager’s bit-flipping algorithm
and the designed error pattern Ψd with t = 84 and t = 90. The number of decoding
trials in a group is M = 100, 000 and M = 10, 000, respectively.

t = 84 t = 90
multiplicity error rate σ error rate σ

0 0.0044099 0.00003868 0.415395 0.000830
1 0.0009116 0.00001304 0.248642 0.000729
2 0.0001418 0.00000475 0.121623 0.000529
3 0.0000134 0.00000112 0.048330 0.000299

U = 2400. The complexity of determining the DS for t = 84 (or
t = 90) is 228 (or 225).
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Results—Obtaining DS in the CCA Case
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Figure: Classification intervals for the t = 84 worst-case simulation after
356M ciphertexts. All 2400 data points plotted.

The complexity is less than 240 for the proposed security parameters
for 80-bit security using the Gallager’s original bit-flipping decoder.
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Results—Further Improvements

I Inject pairs of ones.
I The same computer for the key reconstruction: from 144s to

0.005s.
I Use soft information.

I The data complexity of the CCA version: from 356M to 40M.
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Discussions: Using Other Decoders

I In implementation the original Gallager’s bit-flipping algorithm
is employed (error rate 5× 10−4).

I The state-of-the-art variants can improve upon it with a factor
of 215.6 (error rate 10−8).

I Reasonable guess: the attack time when using one of these
better decoders is the complexity when using the original one
× 215.6. That is 244 (or 255) for the CPA (or CCA) case when
using the suggested parameters for 80-bit security.
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Final Remarks

I A reaction-type key-recovery attack against QC-MDPC has
been presented.

I This attack can break the CCA-secure version using the
suggested parameters.

I Countermeasure: make the decoding error probability small,
like 2−80 for 80-bit security.

I The attack may still be applicable in e.g. side-channel attacks.
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Thank you for your attention!

Questions?
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Table

Table: The relation between the number of nonzero hijei ’s and that of
correctly changed counters in the first decoding iteration.

# (hijei = 1) sj ŝj #(right change) #(wrong change)
0 0 0 w 0
1 1 0 1 w − 1
2 0 0 w − 2 2
3 1 0 3 w − 3
...

...
...

...
...
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