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NTNU Testimon Digital Forensics Group

• Cyber Threat Intelligence and Security Operations
– Malware, IDS, etc

• Digital Evidence Analysis and Linkages

– Digital Forensics, Network Analysis, Big Data, Simulations, etc

• Public Sector partners 

ØKOKRIM, KRIPOS, CYFOR, etc

• Private Sector partners 

Telenor, NorSIS, mnemonic, KMPG, PWC, etc
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Avoid “Push Button” Forensics

https://en.wikipedia.org/wiki/Montparnasse_derailment#/media/File:Train_wreck_at_Montparnasse_1895.jpg
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Machine Learning Basics

1. Digital Forensics Motivation

2. Building Models of Systems Under Study

3. Attributes as Features/Feature Space

4. Different types of ML approaches

5. Advanced Topics

MLB-0
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Models 1

• Models To Explain the Structure in the Data

M1-0
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What Are Our Assumptions?

• We ASSUME there is a hidden structure in our data
– Exploratory Data Analysis (EDA)

– Confirmatory Data Analysis (CDA)

• We ASSUME the structure in our data is a reflection of 
that data’s origin (what we are examining)

• We ASSUME that the structure revealed by our data 
analysis is the hidden structure we are seeking

• Sometimes, our assumptions are wrong….

M1-1
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Building Models

It doesn't matter how beautiful your theory is, 

it doesn't matter how smart you are. 

If it doesn't agree with experiment, 

it's wrong.

-Richard P. Feynman

M1-2
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Why Build Models?

• Suspect used computer to engage in illegal activity.
• Incriminating files were deleted

– HDD file space is now unallocated
– Unallocated space partially over-written 

• Traces can still be found.

• Want a ML to recover partially deleted files that are missing 
headers.

• Each target file type has a characteristic structure
– HTML files

“<“    “>”
– JPGs

• Higher information entropy

• We have a mental model of the targets
• Want the ML algorithms to learn and build internal models of 

the targets.
– they build internal models of the data 

M1-3
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Some Principles of Model Building

1. Observation (Data Input)

2. Generalization (Model Construction)

3. Application (Model Utilization)

• The choices made for #1 and #2 are driven by #3:
– It. Depends. Upon. Your. Application.

– (IDUYA)

M1-4
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DIKW ProgressionRaw Packet DataNetwork Resources UtilizationIntrusion DetectionIDS PolicyAnalysis

Interpretation

Understanding

DataInformationKnowledgeWisdom
MLMLML

M1-5
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Useful Output (3)

Attribute Data (1)

M1-6S
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Data:
Attributes and Features

A&F-0
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Why is The Feature Space So Important?

• Machine Learning isn’t magic
• A trained ML algorithm builds an internal model of 

the feature space.

• SPEND MORE TIME ON THIS

• Features vs attributes

A&F-1
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From Attributes to Feature Spaces

• Have a big pile of mixed wooden blocks

• 2 different kinds of wood 
– Ash

– Pine

• Want to be able to measure a wooden block’s attributes 
and use them to determine the type of wood 

• Decided on two optical attributes 
1. Overall brightness 

2. Wood grain prominence (peak to peak variation)

Wood Classification Example

A&F-2
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Wood Brightness and 
Grain Prominence

http://www.dannerscabinets.com/blog/mn-custom-cabinet-shop-custom-cabinets/ A&F-3
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Attributes Form Feature VectorsBrightness
Grain Prominence

P0.30
10

0.37.5 17.5
A&F 4
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Important Aspect of Feature Spaces

If a feature space is a vector space,

=>  All the tools of Linear Algebra can be utilized!

A&F 5
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Can All Be Combined into Feature Vector

• The attributes of what you are studying/modelling:

– Length (meters, inches, light years)

– Weight (grams, pounds, carats)

– Time (seconds, years)

– Money

– Number of Packets

– Number of Bytes

– Etc

What Does Your Data Represent?

Enables Data Fusion

A&F-4
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• Malware File Structure

– File Size

– Data Section Size

– Data Entropy

– API Calls

• Intrusion Detection 
Packet Structure
– Packet Size

– Data Size

– TTL Time

– ACK Sequence

• Crime Investigation

– Character distribution

– Data Entropy

• 80%    - Compression

• ~100% - Encryption

Some Digital Forensics Attributes

A&F-5



20

Data Collection (Observation)

• What attributes are important?

• Are there redundancies we can exploit?

– Fewer attributes required

• Reduce data dimensionality

• Reduce model complexity

A&F-6



21

Attribute Data Preprocessing

• Prepare the data for use in ML

• Clean the data
– Remove outliers

– Reduce noise

• Feature Extraction
– Spectral Analysis

– Principal Component Analysis

– Independent Component Analysis

• Feature Selection
– Remove redundant features (CFS)

A&F-7
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Basic Machine Learning:
Testing & Training Data

T&T-0
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The Machine Learning ProcessPreprocessing Learning/Adaptation Internal ModelFeature Extraction/Selection Classification/RegressionPreprocessing Feature Extraction/SelectionTraining DataTesting Data Application
OutputEvaluation

T&T-1



24

Training/Testing Data Partition

• Not all of the available data is used in training

• Some of the data is held back, to test the model that was 
created by the ML adaptation to the training data

• A good model with sufficient data will learn to “generalize”

– During training, it will adapt to the hidden structure in the data

– If the data contains a good representation of the system under 
study (by implication, the structure in the system) then it will 
recognize the test data as new data samples from the system

T&T-2
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Training the Wood ClassifierBrightness
Grain ProminenceP PBP PB B BPPB BB PP0 1

10
T&T-3
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Testing the Wood ClassifierBrightness
Grain ProminenceP PBP PB B BPPB BB PP0 1

10
T&T-4

BP
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Using the Wood ClassifierBrightness
Grain ProminenceP PBP PB B BPPB BBPP0 1

10
T&T-4

X
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The Internal Model



Internal Model Principle

IM-1
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A Two Class, Wood Classifier
(Pine and Birch)Brightnessa2

a1 Grain ProminenceBB B BP B BBB
IM-2

b f(x) = mx + bPPP PPPP B
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A Simple Two Class “Perceptron” a2
a1BB B BP BBBB

IM-3

PPP PPP
Σ

a1 w1
wT=[w1 w2] 

a = [a1 a2]
T

f(w, β) = wTa + β
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Where Are the Class Boundaries?

Weight
Hardness

P PB P PB BP PBBBP PFeature Selection Revisited

A&F-8
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What Model Complexity is Required?

It Depends Upon Your Application!

• Project Apollo Moon Landings

– Relativistic mechanics not used

– Newtonian mechanics

• GPS Computations

– Relativity correction required

IM-4
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Simplest Models:
Knowledge Representation

• Uses existing knowledge to create new
– Perspectives of the data

– Knowledge from the data. 

• Raw data is often not understandable or informative
– additional transformation  

– New representation.

IM-5
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Knowledge Representation

• General approaches:
– Rules Based Learning

• First-order logic

• Decision Trees

– Regression (Curve Fitting)

– Descriptive Statistics

• Average (Mean)

• Variance

• Type of Distribution

– Normal (Gaussian)

» “Mean” is sometimes called “the norm”
– Uniform

– Etc

IM-6
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Internal Models:
Rules Based Learning 

RB-0
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First Order Logic

• Logical Descriptions
– describing data samples themselves

– describing relationships between data samples

– describing relationships between data and outputs

http://people.westminstercollege.edu/faculty/ggagne/fall2014/301/chapters/chapter8/index.html Every skier likes the snow: ∀x Skier(x) => LikesSnow(x)
All brothers are siblings:∀x ∀y Brother(x, y) => Siblings(x, y)

RB-1
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– Each branch is selected by the answers to a given decision

– The descent down the tree is like a series of feature space 
partitionings

– The series of decisions will lead from the root to a specific leaf.

• Decision/Classification 

Decision Trees

RB-2
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To ‘play frisby golf’ or not.

overcast

high normal falsetrue

sunny
rain

No NoYes Yes

Yes

Outlook

Humidity
Windy

(Outlook==rain) and (Windy==false)

Pass it though the tree
-> Decision is yes. RB-3
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Decision Tree 
Feature Space Partitioning

From Alpaydin, 2010RB-4
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Objective Functions

OF-0
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Polynomial Curve Fitting

OF-1

Internal Model
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Find the weights wj

OF-2
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Real world system to be modelledRegression estimated model
OF-3

Polynomial Curve Fitting



45

Sum-of-Squares Error Function

It measures how well our internal model accounts for the data

OF-4

This is an “Objective Function”
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Objective Functions

• Measures a figure of merit to be optimized during 
the learning process

– Sum of Squares (for the regression example)

– Mean Square Error (MSE)
• Average of sum of squares

– Least Mean Squares (LMS)

– Statistical Measurements
• Variance 

• Kurtosis 

– Information Theoretical Metrics
• Mutual Information

• Information Entropy
– Negentropy
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(Internal) Model Complexity

MC-0
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0th Order Polynomial 

MC-2

Regression estimated model
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1st Order Polynomial 

MC-2
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3rd Order 3
3

MC-3
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9th Order

What Happened?!

MC-6
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Model Complexity 

• Curse of Dimensionality (Too Much Complexity)

• Overfitting

MC-7



53 MC-8

Training Performance Evaluation
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The Machine Learning ProcessPreprocessing Learning/Adaptation Internal ModelFeature Extraction/Selection Classification/RegressionPreprocessing Feature Extraction/SelectionTraining DataTesting Data Application
OutputEvaluation

T&T-1
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Training Data, Testing Data &
Over-fitting

MC-9
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• The model complexity drives the training data 

requirements!

A Central Principle in ML

MC-10
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More Data Can Fix Overfitting Problem

• N= 15 Data Points

• N= 100 Data Points

• N= 10 Data Points

MC-11
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Curse of Dimensionality
(Model Complexity)

MC-12
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Wood classifier with 1D feature space?

• More complex problems, require more complex models

• More complex models, require more complex feature spaces

– Need higher dimensionality to get good class separationWood BrightnessGrain Prominence
MC-13
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Distance Metrics

DM-0
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The Distance Metric

• How the similarity of two elements in a set is 
determined, e.g.
– Euclidean Distance
– Inner Product (Vector Spaces)
– Manhattan Distance
– Maximum Norm 
– Mahalanobis Distance
– Hamming Distance
– Or any metric you define over the space…

DM-1
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Manhattan Distance

https://www.quora.com/What-is-the-difference-between-Manhattan-and-Euclidean-distance-measures
DM-2
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Center = Mean

y
xX X XX XXX X XXX XXXXXX XXXXFar From Normal?

Spread = Variance

DM-3
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Mahalanobis Distance

http://www.jennessent.com/arcview/mahalanobis_description.htm
DM-4
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Mahalanobis Distance

http://stats.stackexchange.com/questions/62092/bottom-to-top-explanation-of-the-mahalanobis-distance
DM-5
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Unsupervised Learning

U-0
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Clustering

• Partitional

• Hierarchical

U-C-1
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Anomaly Detection with 
Unlabelled DataPacket Size

Packet Data SizeX X XX XXX X XXX XXXXXX XXXX
U-C-1
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Recap of Wood Classification

– 2 Optical Attributes or Features

• Brightness

• Grain prominence

– Yielded a 2-Dimensional Feature Space

– We had SUPERVISED learning:

• We started with known pieces of wood

• Gave each plotted training example its class LABEL

– We chose our features well, we saw good 
clustering/separation of the different classes in the 
features space.

U-C-2
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Unlabelled DataBrightness
Grain ProminenceX XXX XX X XXXX XXXX0 1

10
U-C-3
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Partitional Clustering 

U-C-3



Hierarchical Clustering: 
Corpus browsing

dairy
crops

agronomyforestry

AI

HCI
craft

missions

botany

evolution

cell
magnetism

relativity

courses

agriculture biology physics CS space

... ... ...

… (30)

www.yahoo.com/Science

... ...

U-C-3
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Essentials of Clustering

• Similarities

– Natural Associations

– Proximate*

• Differences

– Distant*

*Implies a distance metric

U-C-3
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Essentials of Clustering

• What is a “Good” Cluster?
– Members are very “similar” to each other

• Within Cluster Divergence Metric  σi

–Variance also works

• Relative Cluster Sizes versus Data Spread

U-C-4
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Partitional Clustering Methods

• K-Means Clustering 

• Gaussian Mixture Models 

• Canopy Clustering 

• Vector Quantization 

U-C-5
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Unsupervised Learning/Clustering

Self Organizing Maps (SOM)

U-C-7
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SOMs
Topology Preserving Projections 

http://www.cita.utoronto.ca/~murray/GLG130/Exercises/F2.gif
U-C-8
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http://www.cita.utoronto.ca/~murray/GLG130/Exercises/F2.gif
U-C-9
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Topology Preserving Projections 

http://www.cita.utoronto.ca/~murray/GLG130/Exercises/F2.gif
U-C-10
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Topology Preserving Projections

• How will the distance metric handle polymorphous data?
– Units of time (different units of time?)

• Sprint performance data: years of age and seconds to finish

– Units of space 

• (meters, lightyears)

• Surface area

• Volumetric

– Units of mass (grams, kilograms, tonnes)

– Units of $$$

• NOK

• USD

U-C-11
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Proximity By Colour and Location

http://www.cis.hut.fi/research/som-research/worldmap.html
Poverty Map of the World (1997) 

U-C-12
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www.cs.hmc.edu/courses/2003/fall/cs152/slides/som.pdf
Map of Labels in Titles From comp.ai.neural-nets-newsnewsgroup

U-C-13
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Learning As Search

LAS-0
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• Exhaustive search 
– DFS

– BFS

• Gradient search 

– Can Get Stuck in Local Optimal Solution

• Simulated annealing  
– Avoids Local Optima

• Genetic algorithms

LAS-1
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Exact vs Approximate Search 

• Exact:
– Hashing techniques

– String matching (“Murder”)

• Approximate:

– Approximate Hashing 

– Partial strings

– Elastic Search

• “murder”
• “merder”

LAS-7
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Artificial Neural Networks (ANN)

ANN-0
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Inspired by Natural Neural Nets

ANN-1
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Perceptron (1950s)

ANN-2
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Perceptron Can Learn
Simple Boolean Logic

Single Boundary, Linearly Separable

ANN-03
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Perceptron Cannot Learn XOR

ANN-4
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Multi-Layer Perceptron 
Error Back-Propagation Network

MLP-BP

ANN-5
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MLP-BP Internal Model Building Block

5 MLP-BP Neurons 

ANN-7
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MLP-BP “Universal Voxel”

ANN-8
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NeuroFuzzy Methods 

NF-0
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Neuro Fuzzy Overview
• Neuro-Fuzzy (NF) is a hybrid intelligence / soft computing 

– (*Soft?)

• A combination of Artificial Neural NetworkS (ANN) and Fuzzy 
Logic (FL)

• Opposite of fuzzy logic is 
– Crisp
– Sharp

• ANN are black box statistics, modelled to simulate the activity 
of biological neurons

• FL extracts human-explainable linguistic fuzzy rules

• Applications in Decision Support Systems and Expert Systems

NF-1
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Fuzzy Basics 

• FL uses linguistic variables that can contains several 
linguistic terms

• Temperature (linguistic variable)
– Hot (linguistic terms)

– Warm

– Cold

• Consistency (linguistic variable)

– Watery (linguistic terms)

– Gooey

– Soft

– Firm

– Hard

– Crunchy

– Crispy

NF-2



97http://sci2s.ugr.es/keel/links.php

Triangular Fuzzy Membership Functions

NF-3
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Fuzzy Inference

● Sharp antecedent: “If the tomato is red, then it is 
sweet”

● Fuzzy antecedent:  

● “If the piece of wood is more or less dark (μdark = 0.7)”

● Fuzzy consequent(s): 

● “The piece of is more of less pine (μpine = 0.64)”
● “The piece of is more of less birch (μbirch= 0.36)”

http://ispac.diet.uniroma1.it/scarpiniti/files/NNs/Less9.pdf

NF-4
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Combining ANN/FL

● ANN black box approach requires sufficient data 
to find the structure (generalization learning)

● NO PRIORS required

● But cannot extract linguistically meaningful rules from 
trained ANN

● Fuzzy rules require prior knowledge 

● Based on linguistically meaningful rules

http://www.scholarpedia.org/article/Fuzzy_neural_network

NF-5
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Combining ANN/FL

● Combining the two gives us higher level of system 
intelligence

● Intelligence(?)

● Can handle the usual ML tasks 

● (regression, classification, etc)

http://www.scholarpedia.org/article/Fuzzy_neural_network

NF-6
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Support Vector Machines

SVM-1
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This Feature Space Isn’t Linearly Separable

SVM-2
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Apply the Kernel Trick!

SVM-3
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Perhaps a Different Feature Space?

SVM-4
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Another Type of Learning

• Supervised Learning
– Labelled Data

• Unsupervised Learning
– Unlabelled Data

• Reinforcement Learning
– Situational Signals from Environment

RL-1
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Reinforcement Learning

• The learner/agent is not told which actions to take

• Correct action models are reinforced with a reward 
signal

• May also be a penalty signal
– Eg: actions that use battery power

• Learner/agent must discover which actions yield the 
most reward

• learner/agent interacts with environment and uses trial 
and error

RL-2
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Exploration and Exploitation

• To obtain a reward, a reinforcement learning agent 
must prefer actions that it has tried in the past and 
found to be effective in producing reward.
– But to discover such actions, it has to try actions that it 

has not selected before.

– The agent has to exploit what it already knows in order 
to obtain reward

– But it also has to explore what it doesn’t know order to 
make better action selections in the future. 

– RL systems can learn to forgo an immediate reward in 
favour of maximizing total reward over long term.

Exploitation versus exploration

RL-3



Ensemble Approaches

• Basic idea: 

Build different “experts”, and let them vote

EA-1



Why do they work?

• Suppose there are 25 base classifiers

• Each classifier has error rate, ε = 0.35 (35%)

• Assume independence among classifiers

• Probability that the ensemble classifier makes a 

wrong prediction 

– (13 out of 25 get it wrong):

%606.0)1( 
25

25i
25

13








 


 i

i
i



EA-2



Where We Get All These Different Data Sets
Generating ͞new͟ datasets by ͞Bootstrapping͟

- sample N items with replacement from the original N
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EA-3



“Bagging”

• Multiple ML/Classification Algorithms

▪ Ensemble Aggregation

• Need Multiple Training/Testing Data Sets

▪ Bootstrapping

Bootstrapping + Aggregating = Bagging 

EA-4



A Difficult Classification Problem

EA-5



First classifier

EA-6



Next classifier Focuses on Data 
Partition D2

EA-7



Next classifier Focuses on Data 
Partition D3

EA-7



Result is 3 Separate Classifiers

EA-8



Final Classifier learned by Boosting

EA-9
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Performance Evaluation

PE-0
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Training and Testing Performance

PE-1
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Classifier Performance Evaluation: 
Testing Data

• Not all of the data is used to find the best fit

• Some of the data is held back, to test the fit

• A good model with sufficient data will learn to 

“generalize”
– It will converge on the hidden structure in the data

– If the data contains a good representation of the system 
under study (by implication, the structure in the system)

PE-2
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• Precision: exactness – what % of tuples that the classifier 
labeled as positive are actually positive

• Recall: completeness – what % of positive tuples did the 
classifier label as positive?

• Perfect score is 1.0

• Inverse relationship between precision & recall

Classifier Evaluation Metrics: 
Precision and Recall

121Should have been positives
PE-3



Classifier Evaluation Metrics: 
Confusion MatrixActual class\Predicted class C1 ¬ C1C1 True Positives (TP) False Negatives (FN)¬ C1 False Positives (FP) True Negatives (TN)

122
Actual class\Predicted class buy_computer =  yes buy_computer = no Totalbuy_computer = yes 6954 46 7000buy_computer = no 412 2588 3000Total 7366 2634 10000

PE-4
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ROC Curve:
Receiver Operator Characteristic

Sensitivity (TPR) Vs FPR (1-Specificity) 

PE-5
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• Objective Functions

– ML “introspection” of learning performance in training
– Used to evaluate training performance

• ML Performance Evaluation

– Used to evaluate testing performance

– BEWARE OF TRAINING BY OTHER MEANS

PE-6
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Misc Advanced ML Topics

AT-0
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Training By Other Means
(Changing Parameter ϴ)

β

θ

AT-1
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Polymorphous versus Homogeneous Data

• DF Malware File Structure

– File Size

– Data Section Size

– Data Entropy

– API Calls

<-Bytes (integer)

<-Proportion (real)

<- Dimensionless (real)

<- (Strings?)

(Hex)

AT-2
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Z –Statistics Homogenize the DataMean (μx) of Original DataStandard Deviation (σx) of Original Data
Data Standardization

• All data are shifted to have zero mean

• All data are re-scaled to have unit variance

• Enables data fusion for statistical analysis

– eg: Correlation analysis NB: variance = σx2
AT-3



An Ultimate Optimization Strategy,
For Solving Every Problem



There is No Free Lunch!

• “No Free Lunch Theorems for Optimization” Wolpert &  
Macready 1997

• A good approach to solving one type of problem isn’t 
necessarily a good approach for solving other types.

• Power lifting athletes can’t run marathons.
– Different basic body types
– Divergent regimes of training and adaptation designed for adaptation 

to execute a specific task

• Marathon runners can’t power lift.
– Same reasons

• Biometric Template Attacks
– Simplex HC for facial biometrics
– GA for iris biometrics

AT-4
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Thank You!

• Questions

• Comments

• Feedback

• Improvements


