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NTNU Testimon Digital Forensics Group

Cyber Threat Intelligence and Security Operations
— Malware, IDS, etc

Digital Evidence Analysis and Linkages
— Digital Forensics, Network Analysis, Big Data, Simulations, etc

Public Sector partners
DKOKRIM, KRIPQOS, CYFOR, etc

Private Sector partners
Telenor, NorSIS, mnemonic, KMPG, PWC, etc




Avoid “Push Button” Forensics

P e

https://en.wikipedia.org/wiki/Montparnasse_derailment#/media/File:Train_wrec
k_at_Montparnasse_1895.jpg
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Machine Learning Basics

Digital Forensics Motivation

Building Models of Systems Under Study
Attributes as Features/Feature Space
Different types of ML approaches
Advanced Topics

MLB-0



Models 1

* Models To Explain the Structure in the Data




What Are Our Assumptions?

We ASSUME there is a hidden structure in our data
— Exploratory Data Analysis (EDA)
— Confirmatory Data Analysis (CDA)

We ASSUME the structure in our data is a reflection of
that data’s origin (what we are examining)

We ASSUME that the structure revealed by our data
analysis is the hidden structure we are seeking

Sometimes, our assumptions are wrong....

M1-1



Building Models

It doesn't matter how beautiful your theory is,
it doesn't matter how smart you are.
If it doesn't agree with experiment,

it's wrong.

-Richard P. Feynman
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Why Build Models?

Suspect used computer to engage in illegal activity.
Incriminating files were deleted

— HDD file space is now unallocated

— Unallocated space partially over-written
» Traces can still be found.

Want a ML to recover partially deleted files that are missing
headers.

Each target file type has a characteristic structure
— HTML files
ik an

- JPGs
» Higher information entropy

We have a mental model of the targets

Want the ML algorithms to learn and build internal models of
the targets.

— they build internal models of the data

M1-3



Some Principles of Model Building

1. Observation (Data Input)

2. Generalization (Model Construction)

3. Application (Model Utilization)

« The choices made for #1 and #2 are driven by #3:
— It. Depends. Upon. Your. Application.
— (IDUYA)

M1-4




DIKW Progression

B Data

NTNU Raw Packet Data

;

Information Network Resources Utilization

'V'L

Knowledge Intrusion Detection

Understanding ML

Wisdom IDS Policy
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Attribute Data (1)

Model of Attribute’s Source

(2)

Useful Output (3)

M1-6S



Data:
Attributes and Features

A&F-0



E Why is The Feature Space So Important?

NTNU

* Machine Learning isn't magic
« Atrained ML algorithm builds an internal model of
the feature space.

« SPEND MORE TIME ON THIS
 Features vs attributes

A&F-1



From Attributes to Feature Spaces
Wood Classification Example

Have a big pile of mixed wooden blocks

2 different kinds of wood
— Ash
— Pine

Want to be able to measure a wooden block’s attributes
and use them to determine the type of wood

Decided on two optical attributes
1. Overall brightness
2. Wood grain prominence (peak to peak variation)

A&F-2



Wood Brightness and
Grain Prominence

http://www.dannerscabinets.com/blog/m A&F-3
n-custom-cabinet-shop-custom-cabinets/




Attributes Form Feature Vectors

Brightness
10

7.5

Grain

0 0.3 1 Prominence
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B Important Aspect of Feature Spaces

If a feature space is a vector space,
=> All the tools of Linear Algebra can be utilized!

A&F 5



What Does Your Data Represent?

« The attributes of what you are studying/modelling:

— Length (meters, inches, light years)
— Weight (grams, pounds, carats)

— Time (seconds, years)

— Money

— Number of Packets

— Number of Bytes

— Etc

Can All Be Combined into Feature Vector

Enables Data Fusion

A&F-4



‘0] Some Digital Forensics Attributes

NTNU

 Intrusion Detection « Malware File Structure
Packet Structure — File Size
— Packet.Size — Data Section Size
- Data Size — Data Entropy
- TTL Time — API Calls
— ACK Sequence

« Crime Investigation
— Character distribution

— Data Entropy
« 80% - Compression
« ~100% - Encryption

A&F-5



Data Collection (Observation)

 What attributes are important?

* Are there redundancies we can exploit?

— Fewer attributes required
« Reduce data dimensionality
* Reduce model complexity

A&F-6



Attribute Data Preprocessing

Prepare the data for use in ML

Clean the data
— Remove outliers
— Reduce noise

Feature Extraction

— Spectral Analysis

— Principal Component Analysis

— Independent Component Analysis

Feature Selection
— Remove redundant features (CFS)

A&F-7




a Basic Machine Learning:
Testing & Training Data

T&T-0



Training Data Preprocessing

Feature

Extraction/Selection |

The Machine Learning Process

Output
Evaluation

Learning/Adaptation
Internal Model

‘IIII-

‘IIIII

Testing Data Preprocessing

Feature
Extraction/Selection

v

Classification/
Regression

T&T-1

Application



af Training/Testing Data Partition

« Not all of the available data is used in training

« Some of the data is held back, to test the model that was
created by the ML adaptation to the training data

« A good model with sufficient data will learn to “generalize”

— During training, it will adapt to the hidden structure in the data

— If the data contains a good representation of the system under
study (by implication, the structure in the system) then it will
recognize the test data as new data samples from the system

T&T-2




B Training the Wood Classifier

NTNU

Brightness

Grain
Prominence

T&T-3



B Testing the Wood Classifier

Brightness

Grain
Prominence

T&T-4



Using the Wood Classifier

Brightness

Grain
Prominence

T&T-4



E The Internal Model




Internal Model Principle

AC servo
motor

¢2 0l
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L
4

@ 120 Vac

IM-1




A Two Class, Wood Classifier
(Pine and Birch)

Brightness

f(x) =mx+b

B

a, Grain Prominence

IM-2



A Simple Two Class “Perceptron”

flw,B3)= w'a + IM-3



Feature Selection Revisited
©

NTNU

Hardness

Where Are the Class Boundaries?
A&F-8



B What Model Complexity is Required?
NTNU It Depends Upon Your Application!

* Project Apollo Moon Landings
— Relativistic mechanics not used
— Newtonian mechanics

« GPS Computations
— Relativity correction required

IM-4



Simplest Models:
E Knowledge Representation

« Uses existing knowledge to create new
— Perspectives of the data
— Knowledge from the data.

« Raw data is often not understandable or informative
— additional transformation
— New representation.

IM-5



@ Knowledge Representation

« General approaches:

— Rules Based Learning
 First-order logic
» Decision Trees

— Regression (Curve Fitting)

— Descriptive Statistics
* Average (Mean)
« Variance

» Type of Distribution

— Normal (Gaussian)
» “Mean” is sometimes called “the norm”

— Uniform
— Etc

IM-6




B Internal Models:
Rules Based Learning

RB-0



First Order Logic

» Logical Descriptions
— describing data samples themselves
— describing relationships between data samples
— describing relationships between data and outputs

Every skier likes the snow:
Vx Skier(x) => LikesSnow(x)

All brothers are siblings:
Vx Vy Brother(x, y) => Siblings(x, y)

http://people.westminstercollege.edu/faculty/ggagne/fall2014/301/chapters/
chapter8/index.html

RB-1




Decision Trees

— Each branch is selected by the answers to a given decision

— The descent down the tree is like a series of feature space
partitionings

— The series of decisions will lead from the root to a specific leaf.

» Decision/Classification

RB-2




To ‘play frisby golf’ or not.

/
—
sunny Cain
overcast
/ \ / \
high normal true false

| |
i Yes Yes

(Outlook==rain) and (Windy==false)

Pass it though the tree
-> Decision is yes. RB-3




Decision Tree
Feature Space Partitioning
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Figure 9.1 Example of a dataset and the corresponding decision tree. Oval
nodes are the decision nodes and rectangles are leaf nodes. The univariate de-
cision node splits along one axis, and successive splits are orthogonal to each
other. After the first split, {x|x; < wy;} is pure and is not split further.

RB-4 From Alpaydin, 2010



Objective Functions

OF-0



B Polynomial Curve Fitting

0 1
M
y(x, w) = wo + wizr + wox® + ... +wyz™ = E w,;
j=0

Internal Model

OF-1



M
y(x,w)|= wo + wix + wox® + ... +wyr™M = Z wj:r:j
[ . t 1

Find the weights w;

OF-2



B Polynomial Curve Fitting

Real world system to be modelled ——

Regression estimated model

OF-3



Sum-of-Squares Error Function

— % ij: y(mn,w)‘@Q

This is an “Objective Function”

It measures how well our internal model accounts for the data

OF-4



B Objective Functions

I * Measures a figure of merit to be optimized during
the learning process

— Sum of Squares (for the regression example)
— Mean Square Error (MSE)

» Average of sum of squares
— Least Mean Squares (LMS)

— Statistical Measurements
* Variance
o Kurtosis

— Information Theoretical Metrics
 Mutual Information

 Information Entropy
— Negentropy




(Internal) Model Complexity

MC-0



0th Order Polynomial

Regression estimated mode| =

y(x, w) = wy

MC-2



E 1st Order Polynomial v(z,w) =wo + w2

NTNU

MC-2



3rd Order y(wﬂ W) = Wo + W1T + ‘lb’zm‘? + 'w3m3

MC-3



E gth order (y(fﬂ,W) = Wo +UWT + 'LU‘QQI?E + ...+ wﬂ{fmﬂ{f

NTNU

What Happened?!

MC-6



@ Model Complexity

« Curse of Dimensionality (Too Much Complexity)
 Overfitting

MC-7



Training Performance Evaluation
1 . ; ;
—©— Training

MC-8



Training Data Preprocessing

Feature

Extraction/Selection |

The Machine Learning Process

Output
Evaluation

Learning/Adaptation
Internal Model

‘IIII-

‘IIIII

Testing Data Preprocessing

Feature
Extraction/Selection

v

Classification/
Regression

T&T-1

Application



Training Data, Testing Data &
Over-fitting

—©— Training
—O— Test

MC-9



@ A Central Principle in ML

« The model complexity drives the training data
requirements!

MC-10



More Data Can Fix Overfitting Problem

e N= 10 Data Points

* N= 15 Data Points

« N= 100 Data Points

MC-11



Curse of Dimensionality
(Model Complexity)

.’Bg‘

MC-12

372‘

T3



NTNU

Grain Prominence

Grain
Prominence

>
1

MC-13

E * More complex problems, require more complex models
« More complex models, require more complex feature spaces

— Need higher dimensionality to get good class separation

Wood classifier with 1D feature space?

10 & Wood Brightness




Distance Metrics

DM-0



The Distance Metric

* How the similarity of two elements in a set is
determined, e.q.
— Euclidean Distance
— Inner Product (Vector Spaces)
— Manhattan Distance
— Maximum Norm
— Mahalanobis Distance
— Hamming Distance
— Or any metric you define over the space...

DM-1



Manhattan Distance
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y Far From Normal?

Center = Mean

Spread = Variance
DM-3




E Mahalanobis Distance

900

Mahalanobis Distance Ellipses
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http://www.jennessent.com/arcview/mahalanobis_description.htm
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4.01

3.5

3.0

2.5

2.0}

Mahalanobis Distance

a5 50 5.5 6.0 6.5 7.0 7.5 8.0

http://stats.stackexchange.com/questions/62092/bottom-to-top-
explanation-of-the-mahalanobis-distance
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B Unsupervised Learning

U-0



Clustering

 Partitional

 Hierarchical

U-C-1



E Anomaly Detection with
Unlabelled Data

Packet Size

Packet Data
Size

U-C-1



B Recap of Wood Classification

NTNU

— 2 Optical Attributes or Features
* Brightness
« Grain prominence

— Yielded a 2-Dimensional Feature Space

— We had SUPERVISED learning:
» We started with known pieces of wood
» Gave each plotted training example its class LABEL

— We chose our features well, we saw good
clustering/separation of the different classes in the
features space.

U-C-2



E Unlabelled Data

Brightness

Grain
Prominence

U-C-3



Partitional Clustering

:
Sk




Hierarchical Clustering:
Corpus browsing

www . yahoo.com/Science
... (30)

agriculture biology physics space

AN\

magnetis CI missions
relativity

botany |\ cell

forestry agronomy  eyolution

U-C-3



Essentials of Clustering

 Similarities
— Natural Associations
— Proximate*

 Differences
— Distant”

“Implies a distance metric

U-C-3



Essentials of Clustering

« What is a “Good” Cluster?

—Members are very “similar” to each other

 Within Cluster Divergence Metric o,
—Variance also works
 Relative Cluster Sizes versus Data Spread

U-c-4



Partitional Clustering Methods

K-Means Clustering
Gaussian Mixture Models
Canopy Clustering
Vector Quantization

U-C-5



Unsupervised Learning/Clustering

Self Organizing Maps (SOM)

U-C-7



SOMs
Topology Preserving Projections

U-C-8



Figure 2. The relationship between a topographic map
(top) and the corresponding land surface (bottam).

http://www.cita.utoronto.ca/~murray/GLG130/Exercises/F2.gif

U-C-9



0] Topology Preserving Projections

NTNU

http://www.cita.utoronto.ca/~murray/GLG130/Exercises/F2.gif

U-C-10



B Topology Preserving Projections

NTNU

How will the distance metric handle polymorphous data?
— Units of time (different units of time?)

« Sprint performance data: years of age and seconds to finish
— Units of space

» (meters, lightyears)

« Surface area

* Volumetric

— Units of mass (grams, kilograms, tonnes)

— Units of $$%$
« NOK
« USD

U-C-11



Proximity By Colour and Location
Poverty Map of the World (1997)

NTNU

http://www.cis.hut.fi/research/som-research/worldmap.html

U-C-12

81




Map of Labels in Titles From
comp.ai.neural-nets-news
newsgroup

www.cs.hmc.edu/courses/2003/
fall/cs152/slides/som.pdf



E Learning As Search

LAS-0



Exhaustive search
— DFS
— BFS

Gradient search
— Can Get Stuck in Local Optimal Solution

Simulated annealing
— Avoids Local Optima

Genetic algorithms

LAS-1



Exact vs Approximate Search

« Exact:
— Hashing techniques
— String matching (“Murder”)

* Approximate:
— Approximate Hashing
— Partial strings

— Elastic Search
* “murder”
* “merder”

LAS-7



B Artificial Neural Networks (ANN)

NTNU

ANN-0



Inspired by Natural Neural Nets
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Tapson, Jonathan, et al. "Synthesis of neural networks for spatio-temporal spike pattern
recognition and processing."
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B Perceptron (1950s)

X A
y ©. 0
&) ol ®
O
Input 2 @ x
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b x X X
X

ANN-2



Perceptron Can Learn
E Simple Boolean Logic

OR & AND Decision Boundaries

OR AND n
L, |1, |out 1 [ l, ut h
o (o |o o [0 |o \
0 |1 1 o [1 |o (4. 1)
1 0o |1 (1,0) O o 1) 1 o |o (1,00 @ O
1 1 1 \ 1 1 1 ;

\ ~ S ® &
0n oo 0 @y

Single Boundary, Linearly Separable

ANN-03



Perceptron Cannot Learn XOR

XOR
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Multi-Layer Perceptron
Error Back-Propagation Network

input Layer

O

Middle Layer

N Q Output Layer




‘0f MLP-BP Internal Model Building Block

-
-

/

o

5 MLP-BP Neurons

ANN-7



MLP-BP “Universal Voxel”
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E NeuroFuzzy Methods

NF-0



Neuro Fuzzy Overview

Neuro-Fuzzy (NF) is a hybrid intelligence / soft computing
— (*Soft?)

A combination of Artificial Neural NetworkS (ANN) and Fuzzy
Logic (FL)

Opposite of fuzzy logic is
— Crisp
— Sharp

ANN are black box statistics, modelled to simulate the activity
of biological neurons

FL extracts human-explainable linguistic fuzzy rules

Applications in Decision Support Systems and Expert Systems
NF-1



E Fuzzy Basics

* FL uses linguistic variables that can contains several
linguistic terms

« Temperature (linguistic variable)
— Hot (linguistic terms)
— Warm
— Cold

» Consistency (linguistic variable)
— Watery (linguistic terms)
— Gooey
— Soft
— Firm
— Hard
— Crunchy
— Crispy

NF-2



Triangular Fuzzy Membership Functions

5 T ik —T
(10 (30

http://sci2s.ugr.es/keel/links.php
97

NF-3
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@ Fuzzy Inference

. Sharp antecedent: “If the tomato is red, then it is
sweet”

. Fuzzy antecedent:
. “If the piece of wood is more or less dark (Pg, = 0.7)”

. Fuzzy consequent(s):
. “The piece of is more of less pine (ppine = 0.64)"
. “The piece of is more of less birch (y;,,= 0.36)"

http://ispac.diet.uniromai.it/scarpiniti/files/NNs/Less9.pdf

NF-4



Combining ANN/FL

NTNU

. ANN black box approach requires sufficient data
to find the structure (generalization learning)

. NO PRIORS required

. But cannot extract linguistically meaningful rules from
trained ANN

. Fuzzy rules require prior knowledge
. Based on linguistically meaningful rules

http://www.scholarpedia.org/article/Fuzzy_neural_network

99
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Combining ANN/FL

AR .  Combining the two gives us higher level of system
intelligence
Intelligence(?)

. Can handle the usual ML tasks
(regression, classification, etc)

http://www.scholarpedia.org/article/Fuzzy _neural_network

100
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Support Vector Machines
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This Feature Space Isn’t Linearly Separable

Data projected to R™2 (nonseparable)

1.5
L ]
® ®
1.0} %
'-l .:' .' -' u o -
'- - .'
L ] - LT L
.« ® ] 1,
-
0.5} .
L ‘i. ; ...
ce ° i ot "y ®
_ 4 4 55
e L] i
] ® a b, ‘*
o
E U.C" [ ] i l? & "
- . . P . e
.I? ‘l‘ I x A Y ..
F ] i ¥ "l‘ i.. A "- .-
e L XY L] & -
0.5 s, . ... .
L ]
ag ® @ -'. ]
& o & bl e
™ * '-. ™ . g L
o
=1.0 ks ": s .
-133 =1.0 —0.5 0.0 0.5 1.0 15
X Label

SVM-2



Apply the Kernel Trick!

Data in R” 3 (separable)

Data projected to R™2 (nonseparable)
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Perhaps a Different Feature Space?
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Another Type of Learning

« Supervised Learning
— Labelled Data

* Unsupervised Learning
— Unlabelled Data

* Reinforcement Learning
— Situational Signals from Environment

RL-1



Reinforcement Learning

The learner/agent is not told which actions to take
Correct action models are reinforced with a reward
signal

May also be a penalty signal

— Eg: actions that use battery power

Learner/agent must discover which actions yield the
most reward

learner/agent interacts with environment and uses trial
and error

RL-2



Exploration and Exploitation

« To obtain a reward, a reinforcement learning agent
must prefer actions that it has tried in the past and
found to be effective in producing reward.

— But to discover such actions, it has to try actions that it
has not selected before.

— The agent has to exploit what it already knows in order
to obtain reward

— But it also has to explore what it doesn’t know order to
make better action selections in the future.

— RL systems can learn to forgo an immediate reward in
favour of maximizing total reward over long term.

Exploitation versus exploration

RL-3



B Ensemble Approaches

NTNU

e Basic idea:

Build different “experts”, and let them vote

EA-1



@ Why do they work?

Suppose there are 25 base classifiers

Each classifier has error rate, € = 0.35 (35%)

Assume 1independence among classifiers

Probability that the ensemble classifier makes a
wrong prediction

— (13 out of 25 get it wrong):

[ 25 i1 N\25-0 .
Y| e 1-6)T"=0.06=6%

i=13\ !

EA-2



E Where We Get All These Different Data Sets

NTNU

Generating “new” datasets by “Bootstrapping”

- sample N items with replacement from the original N

N=4
187 | 80 | 120 | 30| 45 || O
150 | 80 | 185 | 60 | 88 | 1
150 | 80 | 185 | 60 | 88 | 1
x lxe | x | xlx |y @ 168 | 110 | 155 | 45 | 7.8 || 1
5 T8 1201 304510 168 | 110 | 155 | 45 | 7.8 | 1
160 | 70 | 119 | 36 | 56 | O
150 | 80 | 185 | 60 | 88 | 1
192 | @ | 140 | 50 | 68 | 1 N<3
168 | 110 | 155 | 45 | 7.8 | 1 =
% 160 | 70 | 119 | 36| 56 || O
160 | 70 | 119 | 36| 56 | O
150 | 80 | 185 | 60 | 88 | 1
12| @ | 140 | 50 | 68| 1
168 | 110 | 155 | 45 | 7.8 | 1

EA-3




B “Bagging”

« Multiple ML/Classification Algorithms
= Ensemble Aggregation

* Need Multiple Training/Testing Data Sets
= Bootstrapping

Bootstrapping + Aggregating = Bagging

EA-4



E A Difficult Classification Problem
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First classifier

EA-6



Next classifier Focuses on Data
Partition D,

EA-7



B Next classifier Focuses on Data

Partition D,
hz ;5‘3
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EA-7



B Result is 3 Separate Classifiers

NTNU
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EA-8



Q Final Classifier learned by Boosting

BE_ =sign | 0.42 + 0.65 + (0.92
final
o
i 4+ o
= _I_ — L
f _

EA-9



Performance Evaluation

PE-0



Training and Testing Performance

—©— Training
—O— Test

PE-1



Classifier Performance Evaluation:
Testing Data

 Not all of the data is used to find the best fit
« Some of the data is held back, to test the fit

« A good model with sufficient data will learn to
“‘generalize”
— It will converge on the hidden structure in the data

— If the data contains a good representation of the system
under study (by implication, the structure in the system)
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Classifier Evaluation Metrics:

Precision and Recall

Precision: exactness — what % of tuples that the classifier
labeled as positive are actually positive

LF
L4 BP

precision =

Recall: completeness — what % of positive tuples did the
classifier label as positive?

Trr
e e Should have been

positives

recall =

Perfect score is 1.0
Inverse relationship between precision & recall

PE-3
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Classifier Evaluation Metrics:
Confusion Matrix

Actual class\Predicted C, -C,
class
C, True Positives (TP) False Negatives (FN)
-C; False Positives (FP) True Negatives (TN)

Actual class\Predicted | buy_computer | buy_computer | Total
class = yes =no

buy computer = yes 6954 46 7000

buy computer =no 412 2588 3000

Total 7366 2634 10000

PE-4
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ROC Curve:
Receiver Operator Characteristic
Sensitivity (TPR) Vs FPR (1-Specificity)

100 -

o n oo
= = =
S LI S IR T I Y e e

ra
=
L L

True Positive rate (Sensitivity)

_Ir‘rlllilllﬂ.lll|l.llll.lll
0 20 40 G0 a0 100

False Positive rate (100-5pecificity)
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* Objective Functions
— ML “introspection” of learning performance in training
— Used to evaluate training performance

ML Performance Evaluation

— Used to evaluate testing performance
— BEWARE OF TRAINING BY OTHER MEANS
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Misc Advanced ML Topics

AT-0



Training By Other Means
(Changing Parameter ©)

X1 A
Input 1 @\ O
. o o
Input 2 x.‘ g . o
5 . O
b Output »
p X . (9]
X 2
Activation % O
Function X X .
B x X *
X
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Polymorphous versus Homogeneous Data

« DF Malware File Structure

— File Size <-Bytes (integer)
— Data Section Size <-Proportion (real)
— Data Entropy <- Dimensionless (real)
— API Calls <- (Strings?)
(Hex)

AT-2



Data Standardization
Z —Statistics Homogenize the Data

 All data are shifted to have zero mean
 All data are re-scaled to have unit variance

- Enables data fusion for statistical analysis

— eg: Correlation analysis N
Mean (|.1X) of Original Data

Standard Deviation (O,) of Original Data NB: variance = O-XZ
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An Ultimate Optimization Strategy,
For Solving Every Problem




There is No Free Lunch!

“No Free Lunch Theorems for Optimization” Wolpert &
Macready 1997

A good approach to solving one type of problem isn’t
necessarily a good approach for solving other types.

Power lifting athletes can’t run marathons.
— Different basic body types

— Divergent regimes of training and adaptation designed for adaptation
to execute a specific task

Marathon runners can’t power lift.
— Same reasons

Biometric Template Attacks
— Simplex HC for facial biometrics
— GAfor iris biometrics
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Thank You!

Questions
Comments

Feedback
Improvements




