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Challenges in Security Monitoring and 
Forensic Analytics

} We need to measure and analyze 
network traffic for several purposes
} Usage monitoring: 

} Flash Crowds, 
} Large File Transfers
} Term-of-service Abuse

} Maintenance: 
} Equipment Failures
} Vendor Implementation Errors
} Software Bugs

} Security: 
} Online Fraud Activities
} Malware Spreading
} DDoS Attacks

Botnets
Malware 
Click Frauds
DDoS
Spam/Phishing
Privacy-violation} Hidden, Low-Profile

} Coordinated
} Geographically-distributed
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Research Problems

Sketches
Log … …  
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Sketches
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Process each 
packet in a wire 

speed

In-memory 
sketches capture 

traffic status

Error-bounded measurements enable 
low profile attack detection

Time-decaying window model is used to detect on-going attacks

Scalable to process network-
wide measurements

Forensics

Our Recent Work

Reversible 
Sketches

Coding 
Theory

Dynamic 
Membership 

Query

Time-decaying 
Window

Hash Functions:
Bloom Filters
Hash Tables

Super-spreader
Detection

PCA-based Traffic 
Anomaly

Duplicated clicks

Traffic Activity 
Graph Analysis

Using the low-
rank properties

Low-rank Matrix 
Approximation

Persistent clicks

Botnet C&C 
Communication

Heavy-Change 
Detection

Entropy and Distribution 
Property Tests

Linear Algebra for Matrix 
Approximation
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Identifying Significant 
Contributors from Aggregated 

Flows

} Identifying Significant Contributors from 
Aggregated Flows

} Sampling provides a poor detection rate.
} Sampling rate is low if we need to save packets into the disk
} Most malicious packets are missed.
} Offline analysis is not enough.

} Aggregation: Online Solution
} Each packet is aggregated into a small number of flows
} Maintain a summary for each aggregated flow

} Traffic volume
} Number of distinct IP, Port, etc.
} Entropy
} Etc.

} Detect attacks and anomalies from aggregated flows in a real 
time
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Limitations of Aggregate Queries
} Advantages

} In-memory data structures
} Fast update for each packet

} Trigger an alarm in a real time

} Weaknesses

} Difficult to identify the causes of the alarm
} Existing Solutions

} Modular Hashing
} Combinatorial Group Testing

} Random Projection
} Chinese Reminder Theory

Aggregate Queries
} Heavy-Change Detection

} Identify flow(s) or host(s) that cause sudden changes in traffic 
volume

} where
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Framework

C
oordinated Sam

pling

…
P

acket S
tream

Packet 
Samples

Fast Sketch 
Computation

Aggregate 
Queries

Anomalous 
Key 

Identification

Anomalous 
Aggregated 

Flows

Anomalous 
Keys

Anomalous 
Packets

Local Monitor Network Operation Center

Sketches

Each packet is hashed into 
multiple rows

Update at Local Monitor

1+log(n/ℓ)

( f i , si )

( f1  , s1 )

( f2 , s2 )

P
acket S

tream

ℓ

+si +si +si

+si +si +si

+si +si+si

At each row, we update multiple counters to 
maintain enough information to recover keys later
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Update at Local Monitor
} The quotient function x=q( ) is the division function

} We construct a set of universal hash functions h’j( )

} The hash functions hj( ) maps a flow into a row

} Update the first counter in each row hj(f)

} Update the b-th counter if the b-th bit in its quotient q(f) 
is 1

Query at Network Operation Center
} Merges all sketches
} Determine an aggregated flow 

is anomalous or not

?SrcIP, 
SrcPort, 
DstIP, 
DstPort, 
Protocol

} Our Goal
} Recover a set of flow 

keys corresponding the 
traffic anomalies
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Query at Network Operation Center
} We go through each row one by 

one
} If the first aggregated flow is 

malicious ( its change is larger 
than the threshold):
} We conclude that there is a heavy-

change flow in this row

} We set b-th bit in its quotient to 1 
if the b-th counter is larger than 
the threshold

} We recover its key by 

x=001000100

y=3

Query at Network Operation Center
} If there is only one malicious 

flow in this row, it is easy to 
verify that

} Remove false positives by 
checking the first counter in 
each row for f=φ(x,y) 

f=φ(x,y)
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Comparison with Existing Work

Space Update Time Query Time

Modular 
Hashing O(n 1/log log n log log n) O(log n / log log n) O(kn 1/log log n log log n)

Combinatorial 
Group Testing O(k log n) O(log n) O(k log n)

Random 
Projection O(k) O(1) O(n)

Chinese 
Reminder 
Theory

O(n 0.5) O(1) O(k2)

Our Fast 
Sketch O(k log n/k) O(log n/k ) O(k log n/k )

Application 1: Super-spreader 
} Each counter is replaced by 

Bloom filter (a bit vector)

( SrcIP, DstIP)

( SrcIP, DstIP)

( SrcIP, DstIP)
0

1

0

Three-dimensional Bit Vector
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Application 2: PCA-based Anomaly Detection

} We maintain a series 
of fast sketches.

} Run Principle 
Component Analysis 
on traffic volumes in a 
time window

} Identify anomalous 
aggregated flows

} Recover the roots of 
the detected traffic 
anomalies

Identifying High-Cardinality 
Hosts from Network-wide 

Traffic Measurements
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Problem Definition

} High-cardinality hosts (e.g., super-spreaders) are the signs 
of several known security problems.

8/25/16 19

Super-
spreaders

DDOS 
attack

Spam 
emails

Worm 
spreading

Botnet
takeover

Challenges

8/25/16 20

Network-wide traffic view

Duplicate removing

Mergeable measurements 

Super-spreader identification

Space & time limitation
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Problem Formulation

} We have k routers. For ith router i = 1, …, k, there is a 
packet stream

(si1,di1), (si2,di2), …, (sit,dit), … 

where sit, dit are the source and destination of the packet.
} For a source x, the set of distinct destinations of x in ith

stream at time t is        .
} The destination cardinality of x in all k streams is 

8/25/16 21

Problem Formulation (cont.)

} Let       denote the set of distinct packets at ith router at 
time t with window    ,

} Let     denote the number of distinct packets in k 
streams,

8/25/16 22
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Our Idea - Sketch Design

Group 
Testing

Cardinali
ty 

Estimatio
n

Error-
correctin
g Code

Our 
Sketch
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• Sketches
– Give (ε,δ)-approximations on cardinalities of super-

spreaders in each data stream with using space and time.
– Mergeable: merging two sketches equals to merging two 

data streams.
– Reversible: recover the identity of the super-spreaders 

from the sketch.

Group Testing

} False coin problem 
} N coins with 1 false (weighing less than a real coin)
} Using a balance scale, we can separate the coins in half, compare 

the two halves and choose the half with less weight. 

} Repeat the above step until there is one coin remaining which is 
the false one.

} Need O(logN) weighing.

8/25/16 24
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Group Testing in Our Sketch

} Randomly map all the hosts into multiple groups
} Each group = 1 super-spreader + n small-cardinality hosts

} For each group
} Each of its hosts is randomly mapped to multiple subgroups 

according to the host’s ID.
} Maintain cardinality for each subgroup.
} The subgroups with cardinality larger than the threshold can 

identify the super-spreader’s ID.
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Sketch Design
} Cardinality Estimation

} For each subgroup, we use an existing optimal cardinality estimation 
algorithm to maintain the cardinality of the subgroup.

} Supports merging of multiple data structures by MAX operation.
} Brings in error/noise: subgroups not having a super-spreader may be 

considered to have one.

} Error-correcting Code
} Use error-correcting code, e.g. Hamming code, to encode each host’s 

ID: q àw(q).
} Encoded IDs are used to map hosts into subgroups.
} Decoding w(q) helps us to remove the cardinality estimation errors 

and get the correct q.

8/25/16 26
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Data Structure & Algorithm

8/25/16 27

L  layers(groups).

Te
xtᶯ subgroups for group testing 

+ 1 subgroup for FP removing  

Tex
t

Counters used in 
cardinality estimation 

for each subgroup.

1. Each packet is independently hashed 
into multiple groups according to the 
source s.
Hash functions are based on the quotient 
and remainder of s divided by L .   

2. In each group, (s,d) is mapped into multiple 
subgroups according to the 1-bit of quotient q 
of s divided by L . 
Error-correcting code is used to encode q to 
w(q) before mapping.

3. Each subgroup where (s,d) is mapped to 
will update its cardinality using the 
destination d.

Algorithm – Recover Super-spreaders from 
Sketch
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0

0
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0
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0

1

0

1 1 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0

1 1 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0

Bt[*,*]

W(y) = 000001010

try each of the hash functions on 
decoded y

a = 1000. Layer number is 
also used to recover the 
super-spreader’s ID.

y = 0010. y is the quotient of 
the super-spreader in this 
group with high probability.

8th layer

decoding

Text

Layers 
(groups)

Te
xtSubgroups

Text
super-spreader 

candidate x

Create a 2D binary matrix from C[*,*,*]: test each subgroup C[a,b,*] 
in each layer/group to see if its cardinality is larger than the 
threshold. If yes, set B[a,b]=1, else set B[a.b]=0. 
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Algorithm –False Positives Filtering
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1 0 0 0 1 0 0 0 1 0

0

0

0

1

0

1

0

1

0

1 1 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 1 1 0 1 0 0

1 1 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0

Bt[*,*]

Candidate 
x

hj(x)

On each candidate x, try each 
hash function to see if the 
group it is mapped to has a 
super-spreader. 
If half of the groups do have, 
then x is reported as a super-
spreader.

Performance
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Small Group Discussions
} Balancing accountability and PRIVACY
} Working with big, sometimes incomplete data

} Mobile and wearable platform forensics
} Proving the relevance of evidence and human/platform that 

generated them.
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