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Challenges in Security Monitoring and
Forensic_Analyfics

Network Operation Center (NOC)
» We need to measure and analyze ey

network traffic for several purposes g
. . - k‘ &\
» Usage monitoring: PR L AN

Flash Crowds, - TN N
Large File Transfers

Term-of-service Abuse
» Maintenance:

Equipment Failures

Vendor Implementation Erro k
Software Bugs : g

\

» Secu rity: Atnets
‘ Malware
Online Fraud Activities ‘ :; Click Frauds
Malware Spreading ~ P
. Spam/Phishing
» Hidden, Low-Profile
DDoS Attacks

Privacy-violation
» Coordinated

» Geographically-distributed
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Research Problems

Error-bounded measurements enable Scalable to process network-
low profile attack detection wide measurements

sketches capture
traffic status
Process each
packet in a wire
speed

Forensics

Our Recent Work

) ) Dynamic
Time-decaying Membership
Window ‘ Query : Persistent clicks
) Botnet C&C
Codlng Communication
Theory

Duplicated clicks

. . Super-spreader
Hash Functions: Reversible Detection

Bloom Filters Sketches

Hash Tables Heavy-Change

~ Using the low- Detection
rank properties

Low-rank Matrix
Approximation

Traffic Activity
Graph Analysis
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Identifying Significant
Contributors from Aggregated
Flows
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» Identifying Significant Contributors from
--AggregatedFlows - ________________.

» Sampling provides a poor detection rate.
» Sampling rate is low if we need to save packets into the disk
» Most malicious packets are missed.
» Offline analysis is not enough.

» Aggregation: Online Solution
» Each packet is aggregated into a small number of flows
» Maintain a summary for each aggregated flow
Traffic volume
Number of distinct IP,Port, etc.
Entropy
Etc.

» Detect attacks and anomalies from aggregated flows in a real
time




Limitations of Aggregate Queries

» Advantages
» In-memory data structures
» Fast update for each packet

» Trigger an alarm in a real time

» Weaknesses
» Difficult to identify the causes of the alarm

» Existing Solutions
» Modular Hashing
» Combinatorial Group Testing
» Random Projection

» Chinese Reminder Theory

Aggregate Queries

» Heavy-Change Detection

» Identify flow(s) or host(s) that cause sudden changes in traffic
volume

lop(t) —vp(t —1)| = AV (2)

» where

f={SrcIP, SrcPort, DstI P, DstPort, Protocol }

AV (t) =3 op(t) —vp(t = 1)
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Framework
Anomialous
. Packets
. 0 Packet c 4 Anolz E;IOUS
Ry, o
S D a Samples Anomalous | l|dentification
-} 2 Keys
—- |:| P Anomalous
) s Aggregated
@ 2 Flbws
© 3
3 D T Fast Sketch Sketche; Aggregate
w Computation Queries
Local Monitor Network Operation Center
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Update at Local Monitor

Each packet is hashed into ;* +S; hSi +S;
multiple rows JRe
N ,/, ° ° o [o
° °
h ) °
- +S; +S)| e e |*S;

weais 19Moed

(f2,52)

TSi| ® ® |t

(fi.51)

1
At each row,we update multiple counters to 1+log(n/t)

maintain enough information to recover keys later

8/25/16
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Update at Local Monitor

» The quotient function x=q( ) is the division function
q(f) = Lf/¢]
» We constructa set of universal hash functions h’j()
Wi(x) = ((ajz + ;) mod P) mod ¢
» The hash functions hj() maps a flow into a row

hi(f) = (f mod €) & h5(Lf/¢])
» Update the first counter in each row hj(f)

Chy(£).0 = Chy(f:).0 + 54
» Update the b-th counter if the b-th bitin its quotient q(f)
s 1 Chs(£)b = Chy(fa)b + 5
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Query at Network Operatlon Center

» Merges all sketches

» Determine an aggregated flow
is anomalous or not

0\t
ACTL(D] = FAV (1)
SrclP "* 22
SrcPort, 9 <=
DstiR

» Our Goal DstPort,
Protocol

» Recover a set of flow
keys corresponding the
traffic anomalies
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Query at Network Operatlon Center

» We go through each row one by

» If the first aggregated flow is

one
y=3

malicious (its change is larger

than the threshold):

» We conclude thatthere is a heavy-
change flow in this row

» We set b-th bit in its quotient to |
if the b-th counter is larger than
the threshold

» We recover its key by

pj(x,y) =l +y & hiy(x)

DR
Query at Network Operation Center

o,
S| g+ mdD @R (|f T @R (|f IA])

» If there is only one malicious

flow in this row, it is easy to

verify that [—

y)=xd +y @h'(x)

- |1 ]d +( md )

- f

f=o(x,y)
» Remove false positives by
checking the first counter in
each row for f=@(x,y)
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Comparison with Existing Work

Space Update Time Query Time
Modular
Hashing O(n e gn[oglogn)  O(log n/loglogn) O(kn 82" og log n)
Combinatorial
Group Testing O(k log n) O(log n) O(k log n)
Random
Projection Ok o) O(n)
Chinese
Reminder O(n %%) o(l) O(k?)
Theory
Our Fast
Sketch O(k log n/k) O(log n/k) O(k log n/k)
; ______________________________________________
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Application 1: Super-spreader

» Each counter is replaced by

Bloom filter (a bit vector)
: /.
39
) 80\9,05‘
° “35\‘ 0
( SrclP, DstIP)f@ = = = = 2 o
L § /
[ \\ Z@Cy
. \ \’2
\ [ ]
[ ] \ \A .
( SrclP, DstIP) Noele]|
\
4 e o
( SrclP, DstIP) e o
; ------------------------------ Three-dimensional Bit Vector
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Application 2: PCA-based Anomaly Detection

» We maintain a series
of fast sketches.

» Run Principle
ComponentAnalysis . o
I

on traffic volumesin a |'| |'.“|'|'_ o
time window o —_

» Identify anomalous : : i
aggregated flows ol o 1oT.

» Recover the roots of ol e e | ol
the detected traffic ofe o |ofe
anomalies . o

® o

Identifying High-Cardinality
Hosts from Network-wide
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Problem Definition

» High-cardinality hosts (e.g., super-spreaders) are the signs
of several known security problems.

NetworkOp
Spam Worm

Rou‘ers @@@ N @@
R B B
e \ / joes . om

attack takeover g L
" . OO O m

spreaders : . . :

T
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Challenges

Network-wide traffic view

Duplicate removing

Mergeable measurements

weauns 1ypeq

Super-spreader identification

Space & time limitation

Doo---m®
oom---0f
oom---m®
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Problem Formulation

» We have k routers.For i, routeri= 1, ...,k thereis a
packet stream
(sindin)s (si2di2)s - s (Siedic)s -
where s, d, are the source and destination of the packet.

» For a source x, the set of distinct destinations of x in iy,
stream at time tis o

it
» The destination cardinality of x in all k streams is

, k :
Dy = |Viei Dy

p8/25/16 21
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Problem Formulation (cont.)

» Let A4;,lenote the set of distinct packets at iy, router at

time t with window -

» Let “14.” - {..(.S.i?.’“(.i.'i.l).! j. .E_.[.t..::r"rt;]_}.bts in k
stre: F5,
Fy = | Uy Aul.
We design an (e,d)-approximation algorithm which can
report any host = such that

DZ > 0 + €F,

as a high-cardinality host with a probability at least 1 — 4, and
will report a host 2’ such that

DY < §—¢F,

Per2siie o a high-cardinality host with a probability at most .

8/25/16
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Our Idea - Sketch Design

Cardinali
Group ty o
Testing + Estimatio L)

¢ Sketches
— Give (g,6)-approximations on cardinalities of super-
spreaders in each data stream with using space and time.
— Mergeable: merging two sketches equals to merging two
data streams.
— Reversible: recover the identity of the super-spreaders
from the sketch.

P8/25/16 23
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Group Testing

» False coin problem
» N coins with | false (weighing less than a real coin)
» Using a balance scale, we can separate the coins in half, compare
the two halves and choose the half with less weight.
» Repeat the above step until there is one coin remaining which is
the false one.

» Need O(logN) weighing.

Pe/25/16 24
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Group Testing in Our Sketch

» Randomly map all the hosts into multiple groups

» Each group = | super-spreader + nsmall-cardinality hosts

» For each group
» Each of its hosts is randomly mapped to multiple subgroups
according to the host’s ID.
» Maintain cardinality for each subgroup.
» The subgroups with cardinality larger than the threshold can
identify the super-spreader’s ID.

P8/25/16 25
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Sketch Design

» Cardinality Estimation
» For each subgroup,we use an existing optimal cardinality estimation
algorithm to maintain the cardinality of the subgroup.
» Supports merging of multiple datastructures by MAX operation.
» Bringsin error/noise:subgroups nothavinga super-spreader may be
considered to have one.
» Error-correcting Code
» Useerror-correcting code,e.g.Hamming code,to encode each host’s
ID:q 2> w(q).
» Encoded IDsare used to map hosts into subgroups.

» Decoding w(q) helps us to remove the cardinality estimation errors
and get the correct q.

Pe/25/16 26
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Data Structure & Algorithm

3. Each subgroup where (s,d) is mapped to

will update its cardinality using the 4
destination d.
“1.':;{d}
== —————————— E
1
H . a L layers(groups).
: L
I L
1
(S, (?1) .| = - L v
- - - - -
1. Each packet is independently hashed
into multiple groups according to the 4 .. < Counters used in
source s. ..

Hash functions are based on the quotient Qgrdlnallty estimation
and remainder of s divided by L. %9—) for each subgroup.

1 subgroups for group testing

+ 1 subgroup for FP removing
2. In each group, (s,d) is mapped into multiple
subgroups according to the 1-bit of quotient q
of s divided by L.
Error-correcting code is used to encode q to
w(q) before mapping.

p8/25/16 27
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Sketch

Create a 2D binary matrix from C[*,*,*]: test each subgroup CJ[a,b,*]

in each layer/group to see if its cardinality is larger than the

threshold. If yes, set B[a,b]=1, else set B[a.b]=0.

Bi{*,"]
1({ojojoj1fofofoOo]1]0O
o|l1f1]ojofo|1]1f0]|oO
ojoft1]|ojofo|o]|ofo]1
ojlofo|1]of1]o]|ofo]oO
Layers 110jo0|1f0ofojojo|O0foO ‘try each of the hash functions on| N
(groups) ol1fofof1f1|of1]o0]o0 decoded y
111|011 |1f[1]0]|O0 +
00 0j 0 I al01010}0} layer, |2 = 1000. Layer number is
1 | olofojojo|l1|of1]o0 | also used to recover the super-spreader
T 1 super-spreader’s ID. candidate x
ojlofo[1]1]o0 0 0
C i w—— e
Subgr@ups\ '/ - -
decoding y = 0010. y is the quotient of
W(y) = 000001010 the super-spreader in this
group with high probability. | ~
p8/25/16 28
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Algorithm —False Positives Filtering
On each candidate x, try each Bt[*,*]
hash fchtlon to see if the s lloTololalololola]o
group it is mapped to has a
super-spreader. olli1l1]lolololal1lolo
If half of the groups do have,
then x is reported as a super- offjof1jofo0ojJojof0Oo]0]1
spreader.
of)fofof1f{oj1j0j]0|0¢|O0
Candidate > 1]jjojof1f({ojojo|OfOfO
X oflt|oflof1f[1|of1]o0]o0
h(x) 11110 1|[1[1[1]0]O0
]
ofjfofofof1j1j0|j]0|0|O
1{flcjojojofof1|[O0]1]O0
ofjofof1f1j0jojoj|of|o0
yrsie T g
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Performance
0.10 0.8
0.09 \ —e—no-code o 07 k —O—no-c;)de
% 0.08 \ e § 06 \ +::p:5
ﬁ rep> . ;’ 05 \ —*—Ha‘:nmin
E 0.07 \ = \\ g
§ 0.06 \ 5 03 N
£ o0s 892 A\N
£ N—— £ A\ —
0.03 — 0 \ ‘7\:

3
>

64 128 256 128 256

(a) Compare Coding Methods

1.00
0.40 e —e—no-code 0.90 _’\\‘ —e— no-code
0.35 =w=Rep-3 o —&—Rep-3
e = e 2 080 ~
© 030 - g S Hamming
I3 \ \ 0.70
g 025 2 060 ~C
%020 En 0.50
3 ~  Fow
g o015 z Y N ~
@ 030
n “w
2 0.10 2
o \ T 0.20 ~~,
- w
005 0.10
0.00 t t | 0.00 : i
9 10 11 12 9 10 11 12
p8/25/ 30
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Small Group Discussions
» Balancing accountability and PRIVACY
»  Working with big, sometimes incomplete data
» Mobile and wearable platform forensics
»  Proving the relevance of evidence and human/platform that
generated them.
N it
IOWA STATE
UNIVERSITY
“Liberty means responsibility. That is why most men dread
it.”
— George Bernard Shaw
N it
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