
End to End Defense against Rootkits

in Cloud Environment

Implemenation and Evaluation

Sachin Shetty

Associate Professor
Electrical and Computer Engineering
Director, Cybersecurity Laboratory

Tennessee State University

Implementation

We use qemu-kvm-1.2.0 for creating instances of the guest OS, and
compile linux-2.6.32.60 for the guest kernel

Implementation

• Detector.
– We integrated the detector into qemu-kvm because the guest Oses

are running as user processes on the host OS and the integration
reduces interprocess communications.

– Five components: inspector, data container, hash component, control
component and communication component.

– Inspector is responsible for reading the registers and memory of the
VM.

– Data container component constructs the necessary semantic data
structures from the raw data of the VM’s memory given by inspector
according to the profile, and also stores data coming from the
conductor through communication and control components.

Implementation

• Hash components is used for calculating the current hash
values for the kernel and modules’ code.

• The communication component takes care of all of the
communication with the conductor.

• The control component receives commands through the
communication component from the conductor, then
executes the commands and sends the response back to the
conductor.

Implementation

• The conductor periodically schedules detectors for monitored
guest OSes and initiates analyzer when rootkits are detected.

• Generates original checksums of registered modules
– Performs the same relocation work as the guest kernel does.

• The correct relocation work of a module depends on
– the original object file, the relocation address, the addresses of the

used kernel symbols and the addresses of the used symbols of other
modules.

• The conductor acquires the original object file of a module
from the registration component and obtains its relocation
address from the detector

Implementation

• The conductor can figure out the address of a kernel symbol by
referring to the meta-data of the kernel.

• We create a database storing the relative addresses of symbols
exported by registered modules.

– The conductor can calculate the absolute address of a symbol exported by
a module by looking it up in the database

• To resolve dependency among modules during the relocation, the
conductor calculates original checksums after collecting the
relocation addresses of all loaded modules from the detector.

• Consequently, the conductor can generate original checksums for
all of the loaded modules and send them back to the detector.

• Conductor

– Schedule detector and analyzer

– Handle I/O

• Connection from a new guest OS to be monitored

• Response of detector

• Configuration change

– Sleep

Implementation

Figure 5: State transition of Conductor

• Detector – Inspector integrated

1. Detect extra executable regions

2. Detect code in unused space of kernel modules

3. Detect modifications to the code of kernel and
modules

Implementation

Implementation

• Analyzer

– Independent program

– Scheduled by Conductor

– Perform static analysis and categorize the
detected rootkit

– Perform recovery

Evaluation

• Evaluate RootkitDet’s effectiveness for detecting kernel-level
rootkits that compromise the code integrity of the OS kernel
and recovering modified data

• Measure the overhead introduced to guest OSes and extra
resources consumed by RootkitDet.

• Experiments are conducted on Dell PowerEdge M610 Server
(2.40GHz Intel Xeon E5645 and 6GB memory.
– The hypervisor is qemu-kvm-1.2.0 and host OS is Ubuntu-12.04.

– We used Debian-squeeze with kernel version 2.6.32 as our guest OS.

– Detector is integrated into qemu-kvm, and thus runs with the guest OS
and conductor ran on another computer as a user process.

Evaluation

Evaluation

• Hijacking sys write
system call to hide a
specific process by
tampering with what is
displayed to the
administrators of guest
OSes.

• We recover the modified
system call table to
eliminate the effect of
this rootkit

Evaluation

• Hooking the function
pointer proc root readdir
to hide a specific process
by removing related pid
entry in the proc file
system.

• We find the hooked
function pointer by
tracking down from proc
fs type , which is a global
variable, and correct it
with the real location of
kernel function proc root
readdir

Evaluation

• Manipulating pid hash
table

• Hiding a specific process
by removing related
entry in the pid hash
table.

• We first find the task
struct of the hidden
process by tracking down
from init task , and then
relink it into the pid hash
table to reveal the
hidden process.

Evaluation

Evaluation

Evaluation

Discussions

• RootkitDet system faces some limitations.

• First, it cannot detect rootkits that are erased immediately
after executed or that have no specific code in the kernel
space, like return-oriented rootkits.

• Second, it may not detect all of the code of a rootkit if the
rootkit hides part of its code by switching NX-bit of the
corresponding pages, therefore our system may lose some
characteristic information of the rootkit during analysis.

• Third, it cannot prevent the installation of the kernel-level
rootkits although it detects rootkits and recovers the kernel if

possible.

Discussions

• Fourth, it cannot certainly recover all modifications made by
the rootkits, especially when categorization of the rootkits
fails.

• Finally, the generation of instinct information of rootkits are
not automatic.

Discussions

• RootkitDet can perform quick detection of kernel-level
rootkits by only issuing detection procedure 1 and 2 because
almost all of kernel-level rootkits in the wild introduce extra
code into the kernel space and fewer and fewer of them
modify the code of the kernel or modules.

• RootkitDet system provides the characteristic information of
unknown rootkits to assist further investigation.

• In future work, we can focus on the analysis and recovery of
novel and unknown rootkits and automatic generation of

rootkits’ instinct information.

Conclusion and Future Work

• Conclusion
– Presented RootkitDet system, an efficient, scalable and easy to deploy

kernel-level rootkit detection system in cloud

– RootkitDet leverages the page directory of the kernel space in the guest
OSes and the monitor functions provided by the VMM in the cloud detect
rootkits

– Experimental evaluation show that the RootkitDet system can effectively
detect all of the kernel-level rootkits that insert code into kernel space
with performance cost of less than 1%.

• Future Work
– Migrate infected VM into QEMU after detection of “alien” code pages

and detect control data or non-control data modifications

