Very Static Enforcement
of

Dynamic Policies

COINS seminar 2014
Bart van Delft, Sebastian Hunt, David Sands

PAPER COMPANY

Michael

Pam

Ryan

MICHAEL SCOT
PAPER COMPANY INC.

DUNDER
MIFFLIN?

PPPPPPPPPPPP

Michael

Charles

‘ Jim

MICHAEL SCOT
PAPER COMPANY INC.

DUNDER
MIFFLIN?

PPPPPPPPPPPP

Michael

Charles

‘ Jim

MICHAEL SCOT
PAPER COMPANY INC.

DUNDER
MIFFLIN?

PPPPPPPPPPPP

Michael

o/

Charles

‘ Jim

security policies are
dynamic

prices := in from Dwight;

out prices to Michael;

prices := in from Dwight;

out prices to Michael;

Charles

forget about
nhoninterference

PAPER COMPANY

Michael

Pam

Ryan

forget about
declassification

PAPER COMPANY

Michael N

Pam

security policies are
dynamic

IS existing literature
useless?

o fodle .‘-._- ““- W--";--— .

support for
dynamic policies to

On Flow-Sensitive Security Types

Sebastian Hunt Dravid Sands

-
=

D epartment of Computing Department of Computer Science and Engineering,
School of Informatics, City Wniversity Chalmers University of Technology
London EC 1V OHE, UK Cioteborg, Sweden

sebi@sol. city.ac.uk davel®@chalmers se

with just a small modification

by Ashley Mills Monaghan
illustrations by Vivian Nguyen

principal
typing

one typing to rule them all

e

report

inputDwight

michaelData :=

report

michaelData :

report

inputJim

report

report := inputDwight
michaelData := report
report := 1nputJim
michaelData := report
dependencies

are all you need

e

r-(inputDwight)
r(inputJim)
™ (repor)

report :=

michaelData :

report :=

michaelData :

inputDwight

report

inputJim

report

{inputbwight}

{inputJim}

r(michaelData) —_ {inputJ im}

inputDwight
— secret

inputJim
— public

report ,
— public

r-(inputDwight)
r(inputJim)
™ (repor)

report :=

michaelData :

report :=

michaelData :

inputDwight

report

inputJim

report

{inputbwight}
{inputJim}

r-(michaelData)

{inputJim}

inputDwight
— secret

inputJim
— secret

report ,
— public

r-(inputDwight)
r(inputJim)
™ (repor)

report :=

michaelData :

report :=

michaelData :

inputDwight

report

inputJim

report

{inputbwight}
{inputJim}

r-(michaelData)

{inputJim}

one typing to rule them all

security policies are
dynamic

policy 1 —

report := inputDwight

michaelData := report
policy 2 —

report := 1nputJim

michaelData := report

still the same dependencies

only last policy relevant?

policy 1 —

report := 1nputDwight
out report to Michael
policy 2 —
report := 1nputJim

out report to Michael

modification 1:

add outputs

policy 1 —

report := inputDwight
out report to Michael
policy 2 —
report := 1nputJim

out report to Michael

dependencies
differ per output

policy 1 —

report := inputDwight

out report to Michael @ p
policy 2 —
report := 1nputJim

out report to Michael @ g

modification 2:

maintain dependencies
per output

policy 1 —

report := 1nputDwight

out report to Michael @ p
policy 2 —
report := 1nputJim

out report to Michael @ g

r(Michael @ p) —_ {inputDwight}

r(Michael @ q) —_ {inputJim}

(pOliCieS report := inputDwight
irrelevant out report to Michael @ p

fOr typlng) report := inputJim

out report to Michael @ g

r(Michael @ p) —_ {inputDwight}

r(Michael @ q) —_ {inputJim}

by Ashley Mills Monaghan
illustrations by Vivian Nguyen

only adding one typing rule

TS-OUTPUT

- {out eona @ p}lila, — fv(e)U{pc,a,a,};a— {pc,a}l]

dependencies
are still all you need

how does this enforce
dynamic policies?

r(Michael @ p) —_ {inputDwight}

r(Michael @ q) —_ {inputJim}

let's first define
dynamic policies

policy changes
synchronously
with program
execution

execution points determine
current policy ...

.. approximated by
program points

assume approximation
of policy per program point

report := 1nputDwight
out report to Michael @ p

report := inputJim

out report to Michael @ ¢

assume approximation

of policy per pregrarm point
output

report := 1inputDwight

apprOX p — | out report to Michael @ p

report := inputJim

APProX. Q —> | out report to Michael @ o

enforcement:

check If dependencies
conform with approximations

take-nome messages
of this talk

security policies are
dynamic

extending existing work
IS possible

dependencies
are all you need

Paper, code and
more pictures on

Dynamic Enforcement of Dynamic Policies

slio.bitbucket.org

Contribution

Information flow research aims to
detect and prevent information

flows disallowed in a system.
Although security policies are
inherently dynamic, most approaches
only enforce static policies.

This poster presents an extension
to support dynamic policies in LIO,
a policy enforcement library for
Haskell.

Dynamic Policies

Most enforcement mechanisms only
enforce static security policies,
such as the example company
policy in the 'Before' picture. Here
Carl's information can flow to his
boss Alice, but not to Bob or Dave.

In practice, however, policies are
much more dynamic and change
while the system is running. For
example, Alice might get fired,
leading to Bob and Dave being

promoted as shown in the 'After'
picture. Now Carl's information can
flow to Bob, but no longer to Alice.

Before: After:

[Dave| |carl|

|Bob| |cCarl|

B Policy data

Pablo Buiras and Bart van Delft

LIO

read

write

Car

> iun

Ir
L

User code

The Haskell library LIO dynamically
enforces information flow control'],
That is, it checks for violations of

a (static) security policy while the
program is running.

All input/output points are labelled
with a security level (hence the
name Labelled 10). The LIO library
replaces default I/O operations and
maintains in the current label an
upper bound on the information
currently in scope. As static policies
are typically defined as lattices,
such an upper bound always exists.
Before a side-effect happens, such
as writing to a file, LIO verifies that
the information in scope is allowed
to flow to an output with that label.

LIO is parametrised: user code is
able to specify the set of security
labels and the static ordering (C)
between them.

#.) CHALMERS

UNIVERSITY OF TECHNOLOGY

Stateful LIO

=
read
kL
write to
~
S ETY

|
| <aeree SYC PPOGram | *

and policy state

We propose that the LIO library
additionally maintains a policy state.
User code may specify what kind of
information is stored in the state

and use operations provided by LIO
to read or modify the state.

The state is provided as an additional
argument to C and can thus influence
the ordering between labels.
Therefore, there may be no upper
bound to store in the current label, so
we represent it as a set of labels.

An additional check is introduced to
verify new information flows arising
from state change.

Example

We encode the state as the set of
allowed flows:

bl, g5 Wbl, = (lbl,,lbl,) € S

Starting with the policy state as in the
'‘Before' figure, exampleProgranm is secure.
unless we remove the call to fireAlice,
then LIO prevents the write to Bob.

This poster is
supported by
COINS funding

Encodings

.’v

A
y

=

; .F:ncod.i.ng iibrary

Rather than defining C and policy
state by itself, user code can (be
required to) use a library encoding
a particular policy language. We
have successfully implemented
several policy languages, including
DLMI?! and Paralocks!.

Future Work

We have proven our extension
secure for sequential LIO. The next
challenge is to support concurrent
LIO as well.

References

[1] Flexible Dynamic infarmation Flow Control in Haskell, Stafan et al,,
Haskell "11, p. 95-106, 2011.

[2] Protecting privacy using the decentralized labe! model, Myers, TOSEM,
p. A10-442, 2000,

131 Paralocks - roje-based information flow control and beyond, Braberg
and Sands, POPL '10, p. 431-444, 2010,

fireAlice = do
s <- getState
let s' = s + {(carl,bob)}
- {(carl,alice), (bob,alice)}
in setState s'

exampleProgram = do
fireAlice
data =- read dataCarl
writeTo Bob data

thank you!

www.cse.chalmers.se/~vandeba

"‘()'1. -1/';—'(-/%71"4(
£

4 i

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

